
Adey, W.R., (1990). Electromagnetic fields and the essence of living systems. Modern Radio Science, J Bach Anderson Ed., Oxford University Press, 1990, pp 1-37.
Adey, W. R. (1993). Biological effects of electromagnetic fields. Journal of Cellular Biochemistry, 51(4), 410–416. https://doi.org/10.1002/jcb.2400510405
Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401–406. https://doi.org/10.1038/387401a0
Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., & Christian, H. J. (2016). Where are the lightning hotspots on Earth? – Bulletin of the American Meteorological Society, 97(11), 2051-2068. (This study uses data from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite to identify lightning hotspots globally. It discusses regional variations and trends in lightning activity, noting increases in specific areas)
Aplin K., Fischer G. (25 February 2019) Atmospheric Electricity in the Solar System – https://doi.org/10.1093/acrefore/9780190647926.013.112
Archer, S. N., Laing, E. E., Möller-Levet, C. S., Van Der Veen, D. R., Bucca, G., Lazar, A. S., Santhi, N., Slak, A., Kabiljo, R., Von Schantz, M., Smith, C. P., & Dijk, D. (2014). Mistimed sleep disrupts circadian regulation of the human transcriptome. Proceedings of the National Academy of Sciences, 111(6). https://doi.org/10.1073/pnas.1316335111
Aschoff, J., Gerecke, U., & Wever, R. (1967). DESYNCHRONIZATION OF HUMAN CIRCADIAN RHYTHMS. The Japanese Journal of Physiology, 17(4), 450–457. https://doi.org/10.2170/jjphysiol.17.450
Aschoff, J. (1969). Desynchronization and resynchronization of human circadian rhythms. Aerosp Med. 1969 Aug;40(8):844-9. PMID: 5803983. https://pubmed.ncbi.nlm.nih.gov/5803983/
Aschoff, J. (1992). Estimates on the duration of sleep and wakefulness made in isolation. Chronobiology International, 9(1), 1–10. https://doi.org/10.3109/07420529209064511
Bartos, P., Netusil, R., Slaby, P., Dolezel, D., Ritz, T., & Vacha, M. (2019). Weak radiofrequency fields affect the insect circadian clock. Journal of the Royal Society Interface, 16(158), 20190285. https://doi.org/10.1098/rsif.2019.0285
Bering III E.A., Few A.A., Benbrook J.R. (1998). The Global Electric Circuit – Physics Today 1 October 1998; 51 (10): 24–30. https://doi.org/10.1063/1.882422
Blake, E. S., Landsea, C. W., & Gibney, E. J. (2011). The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts) – NOAA Technical Memorandum NWS NHC-6. (This report includes discussions on how increased sea surface temperatures could lead to more intense tropical cyclones, which are often associated with increased lightning activity.)
Blackman, C. F., Benane, S. G., Elliott, D. J., House, D. E., & Pollock, M. M. (1988). Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: A three‐model analysis consistent with the frequency response up to 510 Hz. Bioelectromagnetics, 9(3), 215–227. https://doi.org/10.1002/bem.2250090303
Bolte, P., Bleibaum, F., Einwich, A., Günther, A., Liedvogel, M., Heyers, D., Depping, A., Wöhlbrand, L., Rabus, R., Janssen‐Bienhold, U., & Mouritsen, H. (2016). Localisation of the putative magnetoreceptive protein cryptochrome 1B in the retinae of migratory birds and homing pigeons. PLoS ONE, 11(3), e0147819. https://doi.org/10.1371/journal.pone.0147819
Brown, J.A., Jr., Scow, K.M. (1978): Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9: 137–145
Burgin, L. (2010). Book: Der Urzeit-Code: Die ökologische Alternative zur Gentechnik Der Urzeit-Code – Herbig Verlag, ISBN 10: 3776626399, ISBN 13: 9783776626391
Cao, H., Qin, F., Liu, X., Wang, J., Cao, Y., Tong, J., & Zhao, H. (2015). Circadian rhythmicity of antioxidant markers in rats exposed to 1.8 GHz radiofrequency fields. International Journal of Environmental Research and Public Health, 12(2), 2071–2087. https://doi.org/10.3390/ijerph120202071
Chaturvedi, C. M., Singh, V. P., Singh, P., Basu, P., Singaravel, M., Shukla, R. K., Dhawan, A., Pati, A. K., Gangwar, R. K., & Singh, S. P. (n.d.). 2.45 GHz (CW) microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, mus musculus. Progress in Electromagnetics Research B, 29, 23–42. https://doi.org/10.2528/pierb11011205
Carslaw, K. S., Harrison, R. G., & Kirkby, J. (2002). Cosmic rays, clouds, and climate – Science, 298(5599), 1732-1737. (This review discusses the potential influence of cosmic rays on cloud formation and climate, which could indirectly affect lightning activity.
Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description – Atmospheric Research, 135-136, 404-414.(This paper provides a comprehensive lightning climatology using data from the TRMM Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD), showing trends in global lightning activity over several years.)
Cherry, N.J., (2002). Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar/Geomagnetic Activity. Natural Hazards 26: 279 – 331. https://doi.org/10.1023/A:1015637127504
Cherry, N. J. (2003). Human intelligence: The brain, an electromagnetic system synchronised by the Schumann Resonance signal. Medical Hypotheses, 60(6), 843–844. https://doi.org/10.1016/s0306-9877(03)00027-6
Choudhury, A., et al., 2013. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 56 (3), R0331. https://doi.org/10.4401/ag-6235
Contalbrigo, L., Stelletta, C., Falcioni, L., Casella, S., Piccione, G., Soffritti, M., & Morgante, M. (2009). Effects of different electromagnetic fields on circadian rhythms of some haematochemical parameters in rats. Biomedical and Environmental Sciences, 22(4), 348–353. https://doi.org/10.1016/s0895-3988(09)60067-2
Cremer-Bartels, G., Krause, K., Kiichle HJ (1983): Influence of low magnetic-field-strength variations on the retina and pineal gland of quails and humans. Graefs Arch Clin Exp Ophthalmol 220: 248–252
Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Rimmer, D. W., Ronda, J. M., Silva, E. J., Allan, J. S., Emens, J. S., Dijk, D., & Kronauer, R. E. (1999). Stability, Precision, and Near-24-Hour period of the human circadian pacemaker. Science, 284(5423), 2177–2181. https://doi.org/10.1126/science.284.5423.2177
Ehret, C.F. (1985): The actions of high strength 60-Hz electric fields on circadian rhythms in small rodents. In: Biological Effects from Electric Fields, Air Ions, and Ion Currents Associated with High Voltage Transmission Lines. DoE/EPRI Contractor’s Review, Alexandria VA, November
Engelmann, W., Hellrung, W., Johnsson, A. (1996). Circadian locomotor activity of Musca flies: recording method and effects of 10 Hz square-wave electric fields. Bioelectromagnetics. 1996;17(2):100-10. PMID: 9139632. https://pubmed.ncbi.nlm.nih.gov/9139632/
Enomoto, Y., Yamabe, T., Mizuhara, K., Sugiura, S., Kondo, H., 2020. 2020. Laboratory investigation of earthquake lighting due to landslide. Earth, Planet and Space 72, 108. https://doi.org/10.1186/s40623-020-01237-8
Fedele, G., Edwards, M. D., Bhutani, S., Hares, J. M., Murbach, M., Green, E. W., Dissel, S., Hastings, M. H., Rosato, E., & Kyriacou, C. P. (2014). Genetic Analysis of Circadian Responses to Low Frequency Electromagnetic Fields in Drosophila melanogaster. PLoS Genetics, 10(12), e1004804. https://doi.org/10.1371/journal.pgen.1004804
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I. A., & Blyth, A. M. (2018). A projected decrease in lightning under climate change – Nature Climate Change, 8(3), 210-213. (Interestingly, this study projects a decrease in global lightning activity under certain climate change scenarios, due to changes in the distribution of convection. However, it also acknowledges that regional increases are possible, highlighting the complexity of lightning-climate interactions)
Freund, F.T., Kulahci, I.G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., Freund, M. M., 2009. Air ionization at rock surface and pre-earthquake signals. J. Atmos. Sol. Terr. Phys. 71, 1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013
Gavalas-Medici, R., & Day-Magdaleno, S. R. (1976). Extremely low frequency, weak electric fields affect schedule-controlled behaviour of monkeys. Nature, 261(5557), 256–259. https://doi.org/10.1038/261256a0
Groh, K.R., Ehret, C.F., Ready, M.A. (1987): The actions of high-strength 60-Hz electric fields on circadian rhythms in small rodents. In:Biological Effects from Electric Fields, Air Ions, and Ion Currents Associated with High Voltage Transmission Lines. DoE/EPRI Contractor’s Review, Kansas City MO, November
Gurevich, A. V., & Karashtin, A. N. (2013). Runaway breakdown and hydrometeors in lightning initiation – Physics Letters A, 379(13), 894-896. (This paper discusses the theory of runaway breakdown, where cosmic rays can initiate lightning by generating high-energy particles in thunderstorms)
Harrison, R. G., & Carslaw, K. S. (2003). Ion-aerosol-cloud processes in the lower atmosphere – Reviews of Geophysics, 41(3). (This review covers the impact of aerosols on atmospheric conductivity, particularly how they can influence ionization processes and cloud formation)
Harrison, R. G. (2004). Long-term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911–1981 – Atmospheric Research, 70(3), 145-151.
Harrison, R. G. (2004). The global atmospheric electrical circuit and climate – Surveys in Geophysics, 25(5-6), 441-484. Harrison provides a comprehensive overview of the global electrical circuit and discusses how climate change and other factors could influence atmospheric conductivity.
Harrison, R.G., Aplin, K.L., 2010. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Sol. Terr. Phys. 2010, 376–381. https://doi.org/10.1016/j.jastp.2009.12.004
Harrison, R. G., & Usoskin, I. G. (2010). Solar modulation in surface atmospheric electricity – Journal of Atmospheric and Solar-Terrestrial Physics, 72(3-4), 176-182. (This study examines the correlation between solar activity and surface atmospheric electricity, which can influence lightning activity. It suggests a connection between solar cycles and variations in lightning)
Hunting, E. R., Harrison, R. G., Bruder, A., Van Bodegom, P. M., Van Der Geest, H. G., Kampfraath, A. A., Vorenhout, M., Admiraal, W., Cusell, C., & Gessner, M. O. (2019). Atmospheric electricity influencing biogeochemical processes in soils and sediments. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00378
Hunting, E. R., O’Reilly, L. J., Harrison, R. G., Manser, K., England, S. J., Harris, B. H., & Robert, D. (2022). Observed electric charge of insect swarms and their contribution to atmospheric electricity. iScience, 25(11), 105241. https://doi.org/10.1016/j.isci.2022.105241
Izumi, R., Ishioka, N., Mizuno, K., & Goka, T. (2000). Space environment, electromagnetic fields, and circadian rhythm. Biomedicine & Pharmacotherapy, 55, s25–s31. https://doi.org/10.1016/s0753-3322(01)90003-4
Jianguo, H., Tianming, T., Derui, L., 1998. A kind of short-term and imminent precursory information of earthquakes: study on the anomaly of atmospheric electric field before earthquakes. Acta Seismol. Sin. 20 (1), 101–108. https://doi.org/10.1007/BF02650462
Jin, X., Zhang, L., Bu, J., Qiu, G., Ma, Li, Liu, C., Li, Y., 2020. 2020. Discussion on anomaly of atmospheric electrostatic ffeld in Wenchuan Ms8.0 earthquake. J. Electrostat. 104, 103423. https://doi.org/10.1016/j.elstat.2020.103423
Kalapuge, Vindhya, Dilaj Maduranga, Niranga Alahacoon, Mahesh Edirisinghe, Rushan Abeygunawardana, and Manjula Ranagalage. 2023. Overview of Lightning Trend and Recent Lightning Variability over Sri Lanka – ISPRS International Journal of Geo-Information 12, no. 2: 67. https://doi.org/10.3390/ijgi12020067Klerman, E. B., Dijk, D. J., Kronauer, R. E., & Czeisler, C. A. (1996). Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period. AJP Regulatory Integrative and Comparative Physiology, 270(1), R271–R282. https://doi.org/10.1152/ajpregu.1996.270.1.r271
Krebs, C.J., Boonstra, R., Boutin, S., Sinclair, A.R.E. (January 2001). What Drives the 10-year Cycle of Snowshoe Hares? The ten-year cycle of snowshoe hares—one of the most striking features of the boreal forest— is a product of the interaction between predation and food supplies, as large-scale experiments in the yukon have demonstrated, BioScience, Volume 51, Issue 1, January 2001, Pages 25–35, https://doi.org/10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2
Krylov, V. V. (2017). Biological effects related to geomagnetic activity and possible mechanisms. Bioelectromagnetics, 38(7), 497–510. https://doi.org/10.1002/bem.22062
Lewczuk, B., Redlarski, G., Żak, A., Ziółkowska, N., Przybylska-Gornowicz, B., & Krawczuk, M. (2014). Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. BioMed Research International, 2014, 1–13. https://doi.org/10.1155/2014/169459
Lindauer, M., Martin, H. (1968): Die Schwereorientierung der Bienen unter dem Einfluss des Erdmagnetfeldes. Z Vergl Physiol 60: 219–243
Liperovsky, V.A., Meister, C.V., Liperovskaya, E.V., Bogdanov, V.V., 2008. On the generation of electric field and infrared radiaction in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 8, 1199–1205. https://doi.org/10.5194/nhess-8-745-2008.2008
Märcz, F., & Harrison, R. G. (2003). Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and Eskdalemuir (Scotland) – Annales Geophysicae, 21(10), 2193-2200. (This study analyzes long-term data on atmospheric electrical parameters, which indirectly relate to atmospheric conductivity)
Martel, J., Chang, S., Chevalier, G., Ojcius, D. M., & Young, J. D. (2023). Influence of electromagnetic fields on the circadian rhythm: Implications for human health and disease. Biomedical Journal, 46(1), 48–59. https://doi.org/10.1016/j.bj.2023.01.003
Meijer, D.K.F., Geesink, H.J.H. (2017). Nature Unites First, Second and Third Harmonics to Organize Coherent Electromagnetic Frequency Patterns that are Crucial for Health and Disease A Soliton Algorithm with Discrete Frequencies for Ordering and Therapeutic Restoration of Life Processes. https://www.researchgate.net/publication/317003066
Miaojie, F., et al., 2022. The electromagnetic anomaly of Tangshan Guye Ms5.1 earthquake on July12.2020. Seis. Mol. |Geol. 44 (3), 669–685. https://doi.org/10.3969/j.issn.0253-4967.2022.03.007
Moore, P. (1992). Circadian Factors in Human Health and Performance- Electromagnetic Fields and Circadian Rhythmicity. Springer-Verlag New York Inc. ISBN 9781468468014
Nasirpour, Mohammad Hossein, Abbas Sharifi, Mohsen Ahmadi, and Saeid Jafarzadeh Ghoushchi. “Revealing the Relationship Between Solar Activity and COVID-19 and Forecasting of Possible Future Viruses Using Multi-step Autoregression (MSAR).” Environmental Science and Pollution Research International 28, no. 28 (March 16, 2021): 38074–84. https://doi.org/10.1007/s11356-021-13249-2
Nenadovic, V., Mrdakovic, M., Lazarevic, J., Mircic, D., Todorovic, D., & Prolic, Z. (2005). Temperature and magnetic field effects on the activity of protocerebral neurosecretory neurons and corpora allata in Cerambyx cerdo L. larvae. Archives of Biological Sciences, 57(1), 19–24. https://doi.org/10.2298/abs0501019n
Nicoll, K. A., Harrison, R. G., Barta, V. (2019). Vertical profile measurements of atmospheric electricity through the planetary boundary layer – Quarterly Journal of the Royal Meteorological Society, 145(723), 1887-1899. (This study involves measurements of atmospheric conductivity and discusses the role of aerosols and other factors in altering conductivity near the Earth’s surface)
Ossenkopp, K.-P, Kavaliers, M., Hirst, M. (1983): Effect of geomagnetic disturbance on morphine analgesia in mice reduced nocturnal analgesia following a magnetic storm. Neurosci Lett 40: 321–325
Price, C. (2009). Will a warmer climate result in more lightning? – Atmospheric Research, 91(2-4), 479-484. Price examines how global warming might increase lightning frequency, which could have implications for atmospheric conductivity.
Proll, J. (1981). R. A. Wever: The Circadian System of Man, Results of Experiments under Temporal Isolation. XII und 276 Seiten, 181 Abb. Springer Verlag, New York, Heidelberg, Berlin (West) 1979. Preis: 98,— DM. Nahrung/Food, 25(7), 708–709. https://doi.org/10.1002/food.19810250733
Qin, F., Zhang, J., Cao, H., Yi, C., Li, J. X., Nie, J., Chen, L. L., Wang, J., & Tong, J. (2012). Effects of 1800-MHz radiofrequency fields on circadian rhythm of plasma melatonin and testosterone in male rats. Journal of Toxicology and Environmental Health, 75(18), 1120–1128. https://doi.org/10.1080/15287394.2012.699846
Raines, J.K. (9 April 1981). Electromagnetic field interactions with the human body: Observed effects and theories. NASA document ID 19810017132 – Page 25 – Controlled experiments by Wever show that removal of the earth’s natural electric field and/or the application of a manmade field can disrupt circadian rhythm.https://ntrs.nasa.gov/citations/19810017132
Reiter, R.J. (1992). Changes in Circadian Melatonin Synthesis in the Pineal Gland of Animals Exposed to Extremely Low Frequency Electromagnetic Radiation: A Summary of Observations and Speculation on Their Implications. In: Moore-Ede, M.C., Campbell, S.S., Reiter, R.J. (eds) Electromagnetic Fields and Circadian Rhythmicity. Circadian Factors in Human Health and Performance. Birkhäuser Boston, pp 13-25. https://doi.org/10.1007/978-1-4684-6799-4_2
Reiter, R. J. (1993). Static and extremely low frequency electromagnetic field exposure: Reported effects on the circadian production of melatonin. Journal of Cellular Biochemistry, 51(4), 394–403. https://doi.org/10.1002/jcb.2400510403
Reuss, S., Semm, P. (1987): Earth-strength magnetic fields inhibit melatonin synthesis in the pigeon pineal gland. Naturwissenschaften 74: 38–39
Rogers, W. R., Lucas, J. H., Cory, W. E., Orr, J. L., & Smith, H. D. (1995). A 60 Hz electric and magnetic field exposure facility for nonhuman primates: Design and operational data during experiments. Bioelectromagnetics, 16(S3), 2–22. https://doi.org/10.1002/bem.2250160703
Romps, D. M., Seeley, J. T., Vollaro, D., & Molinari, J. (2014). Projected increase in lightning strikes in the United States due to global warming – Science, 346(6211), 851-854. (This study projects that lightning activity in the United States could increase by 12% per degree Celsius of global warming. The authors link this increase to a combination of increased atmospheric moisture and instability due to rising temperatures.)
Rycroft, M. J., Nicoll, K. A., Aplin, K. L., & Harrison, R. G. (2008). Recent advances in global electric circuit coupling between the space environment and the troposphere – Journal of Atmospheric and Solar-Terrestrial Physics, 70(5), 502-517. (This paper discusses how cosmic rays and solar activity may influence the global electric circuit, which in turn could affect lightning activity. The study presents a theoretical framework for cosmic influences on lightning)
Rycroft, M. J., & Harrison, R. G. (2012). Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit – Space Science Reviews, 168(1-4), 363-384.
Sandyk, R. (1997). Resolution of Sleep Paralysis by Weak Electromagnetic Fields in a Patient with Multiple Sclerosis. International Journal of Neuroscience, 90(3–4), 145–157. https://doi.org/10.3109/00207459709000634
Schienle, A., Stark, R., Vaitl, D. (1998). Biological Effects of Very Low Frequency (VLF) Atmospherics in Humans: A Review. Journal of Scientic Exploration, Vol. 12, No. 3, pp. 455-468, 1998
Schwartz PJ. Electromagnetic fields and circadian rhythms. JAMA. 1993 Feb 17;269(7):868-9. PMID: 8426444.
Scott, C. J., Harrison, R. G., Owens, M. J., & Lockwood, M. (2014). Evidence for solar wind modulation of lightning – Environmental Research Letters, 9(5), 055004. (This paper presents evidence that lightning rates might be modulated by the solar wind, particularly during high-speed solar wind streams. The study suggests that solar activity can influence lightning)
Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608
Semm, P. (1992). Pineal Function in Mammals and Birds is Altered by Earth-Strength Magnetic Fields. In Birkhäuser Boston eBooks (pp. 53–62). https://doi.org/10.1007/978-1-4684-6799-4_4
Silver, A. C., Arjona, A., Walker, W. E., & Fikrig, E. (2012). The circadian clock controls toll-like receptor 9-Mediated innate and adaptive immunity. Immunity, 36(2), 251–261. https://doi.org/10.1016/j.immuni.2011.12.017
Simon T., Mayr, G.J., Morgenstern D. Umlauf N., Zeileis A. (2023). Amplification of annual and diurnal cycles of alpine lightning – Clim Dyn. https://doi.org/10.1007/s00382-023-06786-8
Sinclair, A. R. E., Gosline, J. M., Holdsworth, G., Krebs, C. J., Boutin, S., Smith, J. N. M., Boonstra, R., & Dale, M. (1993). Can the Solar Cycle and Climate Synchronize the Snowshoe Hare Cycle in Canada? Evidence from Tree Rings and Ice Cores. The American Naturalist, 141(2), 173–198. https://doi.org/10.1086/285468
Siingh, D., Singh, R. P., Singh, A. K., Gautam, A. S., & Singh, R. (2011). Is lightning activity related to cosmic rays, solar wind, and geomagnetic disturbances? – Journal of Geophysical Research: Space Physics, 116(A8). (This study explores the potential relationship between lightning activity and cosmic rays, solar wind, and geomagnetic disturbances)
Southern, W. E. (1972). Influence of disturbances in the Earth’s magnetic field on Ring-Billed gull orientation. Ornithological Applications, 74(1), 102. https://doi.org/10.2307/1366458
Stelletta, C., De Nardo, P., Santin, F., Basso, G., Michielotto, B., Piccione, G., Morgante, M. (2007). Effects of exposure to extremely low frequency electro-magnetic fields on circadian rhythms and distribution of some leukocyte differentiation antigens in dairy cows. Biomed Environ Sci. 2007 Apr;20(2):164-70. PMID: 17624193. https://pubmed.ncbi.nlm.nih.gov/17624193/
Stolzenburg, M., Marshall, T. C., Rust, W. D., & Bruning, E. C. (2007). Electric field values observed near lightning flash initiations – Geophysical Research Letters, 34(4). (The authors explore the electric fields in thunderstorms and suggest that cosmic rays may play a role in initiating lightning, particularly under certain atmospheric conditions. The paper supports the idea that cosmic rays could influence lightning)
Su J., Chen H. (September 2023). Study on the mechanism of atmospheric electric field anomalies before earthquakes. https://doi.org/10.1016/j.ringps.2023.100060 – (Based on the analysis of seismic electrical characteristics, a possible earthquake early warning method under simplified conditions is proposed in this paper. Monitoring the change of geoelectric potential through geoelectric field measurements combined with other signal anomalies, may realize early earthquake warning)
Sultzman, F.M., Murrish, D.E. (1986): Effects of electromagnetic fields on primates circadian rhythms New York State Power Lines Project – Sulzman, Frank M., and David E. Murrish. Effects of electromagnetic fields on primate circadian rhythms. New York State Power Lines Project, 1986
Tao, C., Xiaoxin, Z., et al., 2021. Imminent estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field. Chin. J. Geophys. 64 (4). Apr. 2021.
Tinsley, B. A., & Zhou, L. (2006). Initial results of a global circuit model with variable stratospheric and tropospheric aerosols – Journal of Geophysical Research: Atmospheres, 111(D16). (This paper presents a model of the global circuit considering aerosols’ influence on atmospheric conductivity, particularly through ionospheric processes)
Tongen, M., Jilou, Xi, Yanqiong, W., Shuzhi, Y., 1999. The variation characteristics of the telluric field in the process of earthquake. Chin. J. Geophys. 42 (4). July.
Treuer, A. (2022) – Snowshoe Hare: Ojibwe Teachings – https://www.youtube.com/watch?v=PeOxc9UmKr4&t=6s
Volkov, A. G., O’Neal, L., Volkova, M. I., & Markin, V. S. (2013). Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress. Journal of Plant Physiology, 170(15), 1317–1327. https://doi.org/10.1016/j.jplph.2013.05.003
Wever, R. (1968). Einfluss schwacher elektro-magnetischer Felder auf die circadiane Periodik des Menschen (The influence of weak electromagnetic fieldsnon the cardiac rhythm of man). The Science of Nature, 55(1), 29–32 & Zeitschrift für Vergleichende Physiologie 12 :111-128. https://doi.org/10.1007/bf00593403
Wever, R. (1970). The effects of electric fields on circadian rhythmicity in men. Life Sci Space Res. 1970;8:177-87. PMID: 11826883. https://pubmed.ncbi.nlm.nih.gov/11826883/
Wever, R. (1973). Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol 17, 227–232. https://doi.org/10.1007/BF01804614
Wever, R. (1974). ELF-Effects on human Circadian rhythms. In Springer eBooks (pp. 101–144). https://doi.org/10.1007/978-1-4684-9004-6_5
Wever, R. (1975). The circadian multi-oscillator system of man. Int J Chronobiol. 3 (1): 19–55. PMID 1193771
Wirz-Justice, A., Daan, S., Folkard, S., Lewy, A., Lund, R., & Zulley, J. (2005). Rütger Wever: An appreciation. Journal of Biological Rhythms, 20(6), 554–555. https://doi.org/10.1177/0748730405281983
Williams, E. R. (2005). Lightning and climate: A review – Atmospheric Research, 76(1-4), 272-287. This review explores the relationship between climate change and lightning activity, suggesting that increased thunderstorms could enhance atmospheric conductivity.
Williams, E. R. (2009). The global electrical circuit: A review – Atmospheric Research, 91(2-4), 140-152. (This review covers how increased thunderstorm activity, potentially influenced by climate change, can affect the voltage and overall behavior of the global electric circuit)
Williams, E. R., & Mareev, E. A. (2014). Recent progress on the global electrical circuit – Atmospheric Research, 135-136, 208-227. https://doi.org/10.1016/j.atmosres.2013.05.015 – (This paper reviews advances in understanding the global electrical circuit and how it might be affected by changes in atmospheric conductivity. Highlights – Electrified shower clouds (without lightning) contribute to the DC global circuit. The DC and AC global circuits are natural frameworks for investigating global change. Evidence for aerosol influence on cloud microphysics and cloud electrification is growing)
Wilson, B.W., Chess, E.K., Anderson, L.E. (1986): 60-Hz electric field effects on pineal melatonin rhythms. Time course of onset and recovery. Bioelectromagnetics 7: 239–242 – https://doi.org/10.1002/bem.2250070213
Wright, K. P., McHill, A. W., Birks, B. R., Griffin, B. R., Rusterholz, T., & Chinoy, E. D. (2013). Entrainment of the human circadian clock to the natural Light-Dark cycle. Current Biology, 23(16), 1554–1558. https://doi.org/10.1016/j.cub.2013.06.039
Xu, T., Hu, Y., Wu, J., Wu, Z., Li, C., Xu, Z., Suo, Y., 2011. 2011. Anomalous enhancement of electric field derived from ionosonde data before the great Wenchuan earthquake. Adv. Space Res. 47, 1001–1005. https://doi.org/10.1016/j. asr.2010.11.006
Xue, X., Ali, Y. F., Luo, W., Liu, C., Zhou, G., & Liu, N. (2021). Biological effects of space hypomagnetic environment on circadian rhythm. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.643943
Yoshii, T., Ahmad, M., & Helfrich-Förster, C. (2009). Cryptochrome mediates Light-Dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biology, 7(4), e1000086. https://doi.org/10.1371/journal.pbio.1000086
Zulley, J., Wever, R., & Aschoff, J. (1981). The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflügers Archiv – European Journal of Physiology, 391(4), 314–318. https://doi.org/10.1007/bf00581514
Zagorskaia, E.A. (1981) Vliianie postoiannogo magnitnogo polia na éndokrinnuiu sistemu [Effect of a permanent magnetic field on the endocrine system]. Kosm Biol Aviakosm Med. 1981 Sep-Oct;15(5):14-7. Russian. PMID: 7026894.