Electric life
Chapter 4 – Plants

BIBLIOGRAPHY – CHAPTER 4 – PLANTS
Plants
Adamatzky, A. (2022). Language of fungi derived from their electrical spiking activity. Royal Society Open Science, 9(4). https://doi.org/10.1098/rsos.211926
Ahamed, M., Elzaawely, A., & Bayoumi, Y. (2013). Effect of Magnetic Field on Seed Germination, Growth and Yield of Sweet Pepper (Capsicum annuum L.). Asian Journal of Crop Science, 5(3), 286–294. https://doi.org/10.3923/ajcs.2013.286.294
Alexander, M.P. and Doijode, S.D. (1995) Electromagnetic Field, a Novel Tool to Increase Germination and Seedling Vigour of Conserved Onion (Allium cepa L.) and Rice (Oryza sativa L.) Seeds with Low Viability. Plant Genetic Resources Newsletter, No. 104, 1-5. https://scirp.org/reference/referencespapers?referenceid=3374693
Armstrong, C. M. (2006). Life among the Axons. Annual Review of Physiology, 69(1), 1–18. https://doi.org/10.1146/annurev.physiol.69.120205.124448
Ashcroft F – Book: The spark of life, electricity in the human body – Publisher W.W. Norton & Company, New York-London, p. 36-37 – 2012
Backster C – Primary Perception: Biocommunication with Plants, Living Foods and Human Cells – White Rose Millennium Press – 2003
Balmori A, Soya, Martínez – The Effects of Microwaves on the Trees and Other Plants – Valladolid; Spain – December 2003
Balodis V, Brumelis G, Kalviskis K, Nikodemus O, Tjarve D, Znotiga V (1996) Does the Skrunda Radio Location Station diminish the radial growth of pine trees? Sci Total Environ 1996;180:57-64. https://www.academia.edu/76419699/Does_the_Skrunda_Radio_Location_Station_diminish_the_radial_growth_of_pine_trees?uc-sb-sw=70999834
Baluska F, Mancuso S, Volkmann D (2006) Communication in plants: neuronal aspects of plant life – Berlin: Springe, ISBN-10 3-540-28475-3 Springer Berlin Heidelberg New York https://www.academia.edu/105536803/Communication_in_Plants
Barlow, P. W., Mikulecký, M., & Střeštík, J. (2010). Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity. PROTOPLASMA, 247(1–2), 25–43. https://doi.org/10.1007/s00709-010-0136-6
Barman P, Bhattachary R (2016) “Impact of Electric and Magnetic FieldExposure on Young Plants – A Review” – Int. J. Curr. Res. Aca. Rev. 4(2): 182-192 – doi.org/10.20546/ijcrar.2016.402.023. https://www.researchgate.net/publication/295542783_Impact_of_Electric_and_Magnetic_Field_Exposure_on_Young_Plants-A_Review
Berger, L., (2020). The Effects of Neodymium Magnets on Plant Growth. https://www.davincisciencecenter.org/wp-content/uploads/2020/06/Logan-BergerWeb.pdf
Biblab S.H. (14th September 2018) “Thunderstorm & Lightning” – Roll: AE-044, MS Session: 2018-19, Department of Geology’ University of Dhaka. THUNDERSTORM & LIGHTNING: A Brief Discussion | Md. Shahadat Hossain Biplab – Academia.edu
Bioart, 7 april 2014 – https://we-make-money-not-art.com/tree_antenna/
Blackman, V. H., Legg, A. T., & Gregory, F. G. (1923). The effect of a direct electric current of very low intensity on the rate of growth of the coleoptile of barley. Proceedings of the Royal Society of London Series B Containing Papers of a Biological Character, 95(667), 214–228. https://doi.org/10.1098/rspb.1923.0034
Bose, J.C. (1902). Book: Response in the Living and Non-living
Bose, J.C. (1926). Book: The nervous mechanism of plants – 224 pages, New York: Longmans Green
Bowles, D. (1998). Signal Transduction in the Wound Response of Tomato Plants. Philosophical Transactions: Biological Sciences, 353(1374), 1495–1510. http://www.jstor.org/stable/57026
Brenner E, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006). Plant neurobiology: an integrated view of plant signalling – Trends Plant Sci 2006;11:411-9. https://doi.org/10.1016/j.tplants.2006.06.009
Breunig H (March 2017). Tree damage caused by mobile phone base stations, an observation guide. https://www.researchgate.net/publication/359481325_Tree_damage_caused_by_mobile_phone_base_stations_An_observation_guide_Photos_and_RF_measurements_by_Cornelia_Waldmann-Selsam_Additional_photos
Burr, H.S. (1935) ‘The electro-dynamic theory of life’ and, ‘The electrical characteristics of living systems’ – Yale University School of Medicine
Burr, H.S. (1940) Diurnal potentials in the maple tree – Yale Journal of Biological – Yale J Biol Med. 1945 Jul; 17(6): 727–734 – Medicine 17: 727–735 – PMID:21434237; PMCID: PMC2601777 – 1945
Burr, H.S. (1937) Tree potentials – Yale J Biol Med. 1947 Jan; 19(3): 311–318 – PMC2602110 – January 1947
Cakmak, T., Dumlupinar, R., Erdal, S. (2010). Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics; 31:120-9.
Canales, J., Henríquez-Valencia, C., & Brauchi, S. (2018). The integration of electrical signals originating in the root of vascular plants. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02173
Carbonell, M., Flórez, M., Martínez, E., Maqueda, R. H., & Amaya, J. M. (2011). Study of stationary magnetic fields on initial growth of pea (Pisum sativum L.) seeds. Seed Science and Technology, 39(3), 673–679. https://doi.org/10.15258/sst.2011.39.3.15
Cezar, L., (August 2021). Bio-Magnetic Effect of Neodymium Magnet on Plant Growth – doi:10.6084/m9.figshare.15180579, https://www.researchgate.net/publication/353954791_Bio-Magnetic_Effect_of_Neodymium_Magnet_on_Plant_Growth
Chalmers, J. A., & Pasquill, F. (1938). The electric charges on single raindrops and snowflakes. Proceedings of the Physical Society, 50(1), 1–16. https://doi.org/10.1088/0959-5309/50/1/302
Chiara, A (2016). Effects of Earth magnetic field on plant growth development and evolution – Department of Life Science and Systems Biology
Choi, W., Hilleary, R., Swanson, S. J., Kim, S., & Gilroy, S. (2016). Rapid, Long-Distance electrical and calcium signaling in plants. Annual Review of Plant Biology, 67(1), 287–307. https://doi.org/10.1146/annurev-arplant-043015-112130
Choo, Ying Ying, and Jedol Dayou. 2013. “A Method to Harvest Electrical Energy from Living Plants”. Journal of Science and Technology 5 (1). https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/563
Christofleau, J (1927). Book: Electroculture. https://archive.org/details/Electroculture_127
Christofleau, J (1923) – Augmentation des recoltesetsauvetage des arb res malades par l’electroculture. La Queue les Yvelines. Seine-et-Oise, France.
Clarke, D. J., Morley, E. L., & Robert, D. (2017). The bee, the flower, and the electric field: electric ecology and aerial electroreception. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology/Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 203(9), 737–748. https://doi.org/10.1007/s00359-017-1176-6
Corsini, E., Acosta, V. M., Baddour, N., Higbie, J., Lester, B., Licht, P., Patton, B., Prouty, M., & Budker, D. (2011). Search for plant biomagnetism with a sensitive atomic magnetometer. Journal of Applied Physics, 109(7). https://doi.org/10.1063/1.3560920
Czerwiński, M., Januszkiewicz, Ł., Vian, A., & Lázaro, A. (2020). The influence of bioactive mobile telephony radiation at the level of a plant community – Possible mechanisms and indicators of the effects. Ecological Indicators, 108, 105683. https://doi.org/10.1016/j.ecolind.2019.105683
Da Silva, J. a. T., & Dobránszki, J. (2015b). Magnetic fields: how is plant growth and development impacted? Protoplasma, 253(2), 231–248. https://doi.org/10.1007/s00709-015-0820-7
Davies, E. (2006). Electrical Signals in Plants: Facts and Hypotheses. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_17
Davies, E. (2004). New functions for electrical signals in plants. New Phytologist, 161(3), 607–610. https://doi.org/10.1111/j.1469-8137.2003.01018.x
Davies, E. (2006). Electrical signals in plants: Facts and hypotheses. In Springer eBooks (pp. 407–422). https://doi.org/10.1007/978-3-540-37843-3_17
Deacon, T (1997). The Symbolic Species, The Co-evolution of Language and The Brain – W. W. Norton & Company: New York, NY, USA. https://uberty.org/wp-content/uploads/2016/02/Terrence_W._Deacon_The_Symbolic_Species.pdf
Doorne Y van – https://www.elektrocultuurvandoorne.com/
Electroculture congress (1912). 1er Congrès international d’électroculture et des applications de l’électricité à l’agriculture, à la viticulture, à l’horticulture et aux industries agricoles, tenu à Reims, du 24 au 26 octobre
Fabricant, A., Iwata, G. Z., Scherzer, S., Bougas, L., Rolfs, K., Jodko-Władzińska, A., Voigt, J., Hedrich, R., & Budker, D. (2021). Action potentials induce biomagnetic fields in carnivorous Venus flytrap plants. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81114-w
Felder, F., Bombelli, P., Dennis. R.(2014). University of Cambridge; Development of a way of using plants as biological solar panels. https://materiability.com/portfolio/moss-fm/
Felle, H. (2001). PH: signal and messenger in plant cells. Plant Biology, 3(6), 577–591. https://doi.org/10.1055/s-2001-19372
Ferraz de Oliveira R., Farmer, T. (November 2016). The de-coding of plants’ electrical signals has begun! – Phytl (plant electrical signal capturing device) signs experimental results at the University of Lausanne, Switzerland – University of Sao Paola, Brazil. https://vivent.ch/2016/11/03/the-de-coding-of-plants-electrical-signals-has-begun/
Fensom, D. S. (1963). THE BIOELECTRIC POTENTIALS OF PLANTS AND THEIR FUNCTIONAL SIGNIFICANCE: v. SOME DAILY AND SEASONAL CHANGES IN THE ELECTRICAL POTENTIAL AND RESISTANCE OF LIVING TREES. Canadian Journal of Botany, 41(6), 831–851. https://doi.org/10.1139/b63-068
Filek, M., & Kościelniak, J. (1997). The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. minor). Plant Science, 123(1–2), 39–46. https://doi.org/10.1016/s0168-9452(96)04567-0
Fischer, G., Tausz, M., Köck, M., & Grill, D. (2004). Effects of weak $16{2\over3}$ Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics, 25(8), 638–641. https://doi.org/10.1002/bem.20058
Flórez, M., Carbonell, M., & Martínez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59(1), 68–75. https://doi.org/10.1016/j.envexpbot.2005.10.006
Fraser-Smith, A.C. (1978) ULF Tree potentials and geomagnetic pulsations – Nature vol. 271, 16 feb 1978. P.641-642 -16. https://ee.stanford.edu/~acfs/ULF%20Tree%20Potentials.pdf
Fromm, J. (1991). Control of phloem unloading by action potentials in Mimosa. Physiologia Plantarum, 83(3), 529–533. https://doi.org/10.1111/j.1399-3054.1991.tb00130.x
Fromm, J., & Eschrich, W. (1993). Electric Signals Released from Roots of Willow (Salix viminalis L.) Change Transpiration and Photosynthesis. Journal of Plant Physiology, 141(6), 673–680. https://doi.org/10.1016/s0176-1617(11)81573-7
Fromm. J., Spanswick. R, (1993) Characteristics of action potentials in willow (Salix viminalis L.) – J Exp Bot 2007; 44:1119–25. https://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Characteristics-of-Action-Potentials-in-Willow–Salix-viminalis-L–.pdf
Fromm, Jörg, and Tillmann Bauer. “Action Potentials in Maize Sieve Tubes Change Phloem Translocation.” Journal of Experimental Botany 45, no. 273 (1994): 463–69. http://www.jstor.org/stable/23693909
Fromm, Jörg, Mohammad Hajirezaei, and Ingo Wilke. “The Biochemical Response of Electrical Signaling in the Reproductive System of Hibiscus Plants.” Plant Physiology 109, no. 2 (1995): 375–84. http://www.jstor.org/stable/4276816
Fromm, Jörg and Houman FeiH. Fei. “Electrical signaling and gas exchange in maize plants of drying soil.” Plant Science 132 (1998): 203-213. https://www.semanticscholar.org/paper/Electrical-signaling-and-gas-exchange-in-maize-of-Fromm-Fei/5e1df193e778e9fdb516dd4a570a32a229805d7d
Fromm, Jörg (2006) Long-distance electrical signaling and physiological functions in higher plants – In: Volkov AG, editor. Plant electrophysiology, theory and methods. Berlin Heidelberg: Springer. https://link.springer.com/chapter/10.1007/978-3-540-37843-3_12
Fromm, J., & Lautner, S. (2006). Electrical signals and their physiological significance in plants. Plant, Cell & Environment/Plant, Cell and Environment, 30(3), 249–257. https://doi.org/10.1111/j.1365-3040.2006.01614.x
Gage G (2017) www.ted.com/talks/greg_gage_electrical_experiments_with_plants_that_count_and_communicate
Ganthaler, A., Sailer, J., Bär, A., Losso, A., & Mayr, S. (2019). Noninvasive analysis of tree stems by electrical resistivity tomography: unraveling the effects of temperature, water status, and electrode installation. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01455
Garden Tips (2019). https://www.youtube.com/watch?v=3jlpQz4EKBs
Genodics. www.genodics.com
Gibert, D., Mouël, J. L., Lambs, L., Nicollin, F., & Perrier, F. (2006). Sap flow and daily electric potential variations in a tree trunk. Plant Science, 171(5), 572–584. https://doi.org/10.1016/j.plantsci.2006.06.012
Gil, P. M., Gurovich, L., Schaffer, B., Alcayaga, J., Rey, S., & Iturriaga, R. (2008). Root to leaf electrical signaling in avocado in response to light and soil water content. Journal of Plant Physiology, 165(10), 1070–1078. https://doi.org/10.1016/j.jplph.2007.07.014
Gilroy, S., Trębacz, K., & Salvador‐Recatalà, V. (2018). Editorial: Inter-cellular Electrical Signals in Plant Adaptation and Communication. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00643
Goldsworthy, A. (2011) Why our urban trees are dying – Electricity is carried in living organisms by ions. http://www.puls-schlag.org/download/Goldsworthy-2011-02-18.pdf
Göncz, B., Divós, F., & Bejó, L. (2017). Detecting the presence of red heart in beech (Fagus sylvatica) using electrical voltage and resistance measurements. Holz Als Roh- Und Werkstoff, 76(2), 679–686. https://doi.org/10.1007/s00107-017-1225-4
Gora, E. M., & Yanoviak, S. P. (2015). Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Canadian Journal of Forest Research, 45(3), 236–245. https://doi.org/10.1139/cjfr-2014-0380
Gordon, S.A., Miller, J.S., Svihla, G., Ostrander, H., Tracy, A. (14 May 1962). Growth and development of plants in compensated gravitational magnetic and electrical fields. NASA.
Guo, H., & Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 7(1), 40–49. https://doi.org/10.1016/j.pbi.2003.11.011
Gurovich, L., & Hermosilla, P. (2009). Electric signalling in fruit trees in response to water applications and light–darkness conditions. Journal of Plant Physiology, 166(3), 290–300. https://doi.org/10.1016/j.jplph.2008.06.004
Guyot, A., Ostergaard, K. T., Lenkopane, M., Fan, J., & Lockington, D. (2013). Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiology, 33(2), 187–194. https://doi.org/10.1093/treephys/tps128
Hackmann, W.D. (1972). Medical Electricity 16:11 “The Researches of Dr. Martinus Van Marum (1750–1837) on the influence of electricity on animals and plants”. Medical History, 16, 11-26.
Haggerty, K. (2010). Adverse influence of radio frequency background on trembling aspen seedlings: preliminary observations. International Journal of Forestry Research, 2010, 1–7. https://doi.org/10.1155/2010/836278
Hanafy, M.S., Mohamed, H.A., Abn El-Hady, E.A. (2006). Effect of low frequency electric fields on growth characteristic and the protein molecular structure of wheat plants. Proceeding of first scientific environmental conference, Zagazig University Egypt p. 49-65, Roman Journal of Biophysics Vol. 16, No. 4/2006. https://www.rjb.ro/effect-of-low-frequency-electric-field-on-growth-characteristics-and-protein-molecular-structure-of-wheat-plant/
Hao, Z., Li, W., & Hao, X. (2020). Variations of electric potential in the xylem of tree trunks associated with water content rhythms. Journal of Experimental Botany, 72(4), 1321–1335. https://doi.org/10.1093/jxb/eraa492
Hedrich, R., Salvador‐Recatalà, V., & Drèyer, I. (2016). Electrical wiring and Long-Distance plant communication. Trends in Plant Science, 21(5), 376–387. https://doi.org/10.1016/j.tplants.2016.01.016
Helder M, 2015 – https://www.ingreenhouses.com/dutch-startup-plant-e-tests-green-electricity-derived-from-grass/
Helman, D. (2014). Earth electricity: a review of mechanisms which cause telluric currents in the lithosphere. Annals of Geophysics, 56(5). https://doi.org/10.4401/ag-6184
Himmelbach, A., Iten, M., & Grill, E. (1998). Signalling of abscisic acid to regulate plant growth. Philosophical Transactions – Royal Society. Biological Sciences, 353(1374), 1439–1444. https://doi.org/10.1098/rstb.1998.0299
Humplík, P., Čermák, P., & Žid, T. (2016). Electrical impedance tomography for decay diagnostics of Norway spruce (Picea abies): possibilities and opportunities. Silva Fennica, 50(1). https://doi.org/10.14214/sf.1341
Hunting, E. R., Matthews, J., De Arróyabe Hernáez, P. F., England, S. J., Kourtidis, K., Koh, K. L., Nicoll, K., Harrison, G., Manser, K., Price, C., Dragović, S., Cifra, M., Odzimek, A., & Robert, D. (2020b). Challenges in coupling atmospheric electricity with biological systems. International Journal of Biometeorology, 65(1), 45–58. https://doi.org/10.1007/s00484-020-01960-7
Hussein, F., Hail, R.C.A., Jabail, W.A. (2012). Effect of Magnetic Field on Seed Germination of Wheat – Walailak J Sci & Tech 2012; 9(4): 341-345. https://www.thaiscience.info/journals/Article/WJST/10897274.pdf
Ijaz, B. (2012). Changes in germination behavior of wheat seeds exposed to magnetic field and magnetically structured water. African Journal of Biotechnology. https://doi.org/10.5897/ajb11.2927
Jayaratne, E., Ling, X., & Morawska, L. (2011). Role of vegetation in enhancing radon concentration and ion production in the atmosphere. Environmental Science & Technology, 45(15), 6350–6355. https://doi.org/10.1021/es201152g
Johnson, B. (3 November 2013). The Ascent of Sap in Tall Trees: a Possible Role for Electrical Forces – doi:10.14294/WATER.2013.9. https://waterjournal.org/archives/johnson-b/
Kieft, H. (2019). Book: ‘Quantum Leaps in Agriculture’, Lambert Academic Publishing. ISBN978 620 0 09142 0.
Kieft, H., Funneman, S. (2022) Book, “Stralende Bomen” – ISBN 979-88-48977-745.
Kiernan, V. (14 January 1995). Forest grows tall on radio waves – New Scientist page 5. https://www.newscientist.com/article/mg14519600-500-forest-grows-tall-on-radio-waves/
Kim, B., Chun, K. (2017). Electrical stimulation and effects on plant growth in hydroponics – University of Daegu Korea, Journal of Engineering and Applied Sciences 12 (17): p. 4396-4399 – ISSN:1816-949X, Medwell Journals. https://www.researchgate.net/publication/320282165_Electrical_stimulation_and_effects_on_plant_growth_in_hydroponics
Kinahan, D. (2009). Struggling to Take Root: The Work of the Electro-Culture Committee of the Ministry of Agriculture and Fisheries Between 1918 and 1936 and its Fight for Acceptance – University College London – Reinvention: a Journal of Undergraduate Research, Volume 2, Issue 1. https://warwick.ac.uk/fac/cross_fac/iatl/student-research/reinvention/archive/volume2issue1/kinahan/
Kopersporen, koperen gieter 1 liter. www.kopersporen.nl/winkel/watergeven/koperen-gieter-1-liter-situla/
Koppán, A., Szarka, L., Wesztergom. V. (January 1999). Temporal variation of electrical signal recorded in a standing tree. https://www.ggki.hu/~szarka/1999_Acta_Koppanetal.PDF
Koppán, A., Szarka, L., & Wesztergom, V. (2000). Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. Comptes Rendus Biologies/Comptes Rendus. Biologies, 323(6), 559–563. https://doi.org/10.1016/s0764-4469(00)00179-7
Koppán, A., Szarka, L., & Wesztergom, V. (2002). Measurement of electric potential difference on trees – Proceedings of the 7th Hungarian Congress on Plant Physiology. Acta Biol Szegediensis 2002;46:37–8. https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2232/2224
Koppán, A. (2004). Variations of the natural electric potential differences occurring on tree trunks and their relationship with the xylem sap flow – PhD Thesis. University of West Hungary, Sopron, Hungary
Kordas, D. (28 July 2017). Birds and Trees of Northern Greece: Changes since the Advent of 4G Wireless – PDF online. https://einarflydal.files.wordpress.com/2017/08/kordas-birds-and-trees-of-northern-greece-2017-final.pdf
Lakhovsky, G. (1939) Book: The Secret of Life. Cosmic Rays and Vital Radiations. W. Heinemann, London. https://archive.org/details/lakhovsky-the-secret-of-life-cosmic-rays-and-vital-radiations
Lanzerotti, L.J., Gregori, G.P. (1986). Telluric currents: the natural environment and interactions with man-made systems – In: The Earth’s Electrical Environment – The National Academies Press, Washington, D.C., pp 232-257. https://static1.squarespace.com/static/55587503e4b0df10506d6192/t/566e97bba976afcb5494ec46/1450088379632/Tulleric+Currents.pdf
Lautner, S., Grams, T. E. E., Matyssek, R., & Fromm, J. (2005). Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiology, 138(4), 2200–2209. https://doi.org/10.1104/pp.105.064196
Lawrence, L.G. (1969). “Electronics and the living plant”.Electronics World 82(4):25-28. https://borderlandsciences.org/project/bio-icomm/lg.lawrence/Electronics_and_the_Living_Plant.html
Lee, M., Zain, M. M., & Sern, L. C. (2018). Lighting system design using green energy from living plants. Journal of Physics. Conference Series, 1019, 012019. https://doi.org/10.1088/1742-6596/1019/1/012019
Lemström, K.S. (1904). Electricity in Agriculture and Horticulture, London: Electrician Publications. https://archive.org/details/cu31924003336116
Love, C. J., Zhang, S., & Mershin, A. (2008). Source of Sustained Voltage Difference between the Xylem of a Potted Ficus benjamina Tree and Its Soil. PloS One, 3(8), e2963. https://doi.org/10.1371/journal.pone.0002963
Madariaga, D., Arro, D., Irarrázaval, C., Soto, A., Da Ré Guerra, F., Romero, A., Ovalle, F. V., Fedrigolli, E., DesRosiers, T., Serbe-Kamp, É., & Marzullo, T. C. (2024). A library of electrophysiological responses in plants – a model of transversal education and open science. Plant Signaling & Behavior/Plant Signalling & Behavior, 19(1). https://doi.org/10.1080/15592324.2024.2310977
Maffei, M. E. (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00445
McCraty, R., Deyhle, A. (2018) Book. ‘Science of Interconnectivity: Exploring the Human-Earth Connection’ – Heartmath Institute, Global Coherence initiative. USA. https://globalcoherencepulse.org/wp-content/uploads/Science-of-Interconnectivity.pdf
Mershin, A., Zhang, Love, C. (24 September 2008). Preventing forest fires with tree power. Sensor system runs on electricity generated by trees. Circuit for tree-electricity – MIT Tech Talk, volume 53, nr.3 p. 4. https://news.mit.edu/newsoffice/2008/techtalk53-3.pdf
Milward R – https://www.instructables.com/Power-from-trees-And-using-this-power-to-collect-d/
Morat, P., Le Mouel, J., Granier, A. (1994). Electrical potential on a tree. A measurement of the sap flow? – CR Acad Sci Paris 1994;317:98-101
Morley, E. L., & Robert, D. (2018). Electric fields elicit ballooning in spiders. CB/Current Biology, 28(14), 2324-2330.e2. https://doi.org/10.1016/j.cub.2018.05.057
Mousavi, S. a. R., Chauvin, A., Pascaud, F., Kellenberger, S., & Farmer, E. E. (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature, 500(7463), 422–426. https://doi.org/10.1038/nature12478
Muraji, M., Asai, T., & Tatebe, W. (1998). Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies. Bioelectrochemistry and Bioenergetics, 44(2), 271–273. https://doi.org/10.1016/s0302-4598(97)00079-2
Murch, S.J. (2006). Neurotransmitters, Neuroregulators and Neurotoxins in Plants. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_10
Murr, L. E. (1965). Biophysics of plant growth in an electrostatic field. Nature, 206(4983), 467–470. https://doi.org/10.1038/206467a0
Music the plants – www.musicoftheplants.com
Mythbusters (2012) – Plants have feelings (primary perception) https://www.youtube.com/watch?v=fStmk7e9lJo
NOVA – https://www.pbslearningmedia.org/resource/nves.sci.earth.nitrate/lightning-produces-nitrates/
Nyakane, N. E., Markus, E. D., & Sedibe, M. M. (2019). The Effects of magnetic fields on Plants Growth: A Comprehensive review. Deleted Journal, 79–87. https://doi.org/10.18178/ijfe.5.1.79-87
Occhipinti, A., De Santis, A., & Maffei, M. E. (2014). Magnetoreception: an unavoidable step for plant evolution? Trends in Plant Science, 19(1), 1–4. https://doi.org/10.1016/j.tplants.2013.10.007
Olsson, S. (1999). Nutrient translocation and electrical signalling in mycelia. In Cambridge University Press eBooks (pp. 25–48). https://doi.org/10.1017/cbo9780511549694.003
Ortega-Jiménez, V. M., & Dudley, R. (2013). Spiderweb deformation induced by electrostatically charged insects. Scientific Reports, 3(1). https://doi.org/10.1038/srep02108
Pachú, J. K. S., Macedo, F. C., Malaquias, J. B., De Souza Ramalho, F., De Oliveira, R. F., Godoy, W. a. C., & Da Silva Salustino, A. (2023). Electrical signalling and plant response to herbivory: A short review. Plant Signaling & Behavior/Plant Signalling & Behavior, 18(1). https://doi.org/10.1080/15592324.2023.2277578
Parviz, B., Otis, B., Himes, C. (2010) The Shocking Truth: Trees are Electric – New circuits tap into electric currents generated by bigleaf maple trees – University of Washington – Massachusetts Institute of Technology. https://scienceline.org/2010/01/the-shocking-truth-trees-are-electric/
Payez, A., Ghanati, F., Behmanesh, M., Abdolmaleki, P., Hajnorouzi, A., & Rajabbeigi, E. (2013). Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagnetic Biology and Medicine, 32(4), 417–429. https://doi.org/10.3109/15368378.2012.735625
Pazur, A., & Scheer, H. (1992). The growth of freshwater green algae in weak alternating magnetic fields of 7.8 Hz frequency. Zeitschrift Für Naturforschung. C, a Journal of Biosciences, 47(9–10), 690–694. https://doi.org/10.1515/znc-1992-9-1009
Pera, M., Morus, I. R. (1993). The Ambiguous Frog: The Galvani–Volta Controversy on Animal Electricity. Princeton, New Jersey: Princeton University Press, 1992. Pp. xxvi + 203. ISBN 0-691-08512-9. British Journal for the History of Science, 26(1), 92–93. https://doi.org/10.1017/s0007087400030296
Pfautsch, S., & Macfarlane, C. (2015). Comment on Wanget al.‘Quantifying sapwood width for three Australian native species using electrical resistivity tomography.’ Ecohydrology, 9(5), 894–895. https://doi.org/10.1002/eco.1631
Pickard, B.G. (1974). Electrical signals in higher plants. Washington University, St. Louis, Missouri 63130, U.S.A. – Naturwissenschaften 61, 60–64. https://doi.org/10.1007/BF00596196
Pittman, U. J. (1972). BIOMAGNETIC RESPONSES IN POTATOES. Canadian Journal of Plant Science/Canadian Journal of Plant Science, 52(5), 727–733. https://doi.org/10.4141/cjps72-119
Plummer, C. (2016) cofounder and CEO of Vivent. Vivent is currently developing and marketing PhytlSigns sensors and associated machine learning models that show how plants respond to environmental cues and biological and chemical treatments. https://vivent-biosignals.com/2024/04/24/innovation-quarter-how-vivent-is-transforming-crop-health-monitoring/
Pollan, M. (15 December 2013) The Intelligent Plant – The New Yorker. https://www.newyorker.com/magazine/2013/12/23/the-intelligent-plant
Phytlsigns – www.phytlsigns.com
Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants/Physiology and Molecular Biology of Plants, 25(5), 1107–1119. https://doi.org/10.1007/s12298-019-00699-9
Rajda, V. (2004). ‘Metabolische energie und elektrodiagnostik der Pflanzenvitalitat’ – The tenth international studyday for electric quality testing (designed a complete electrodiagnostic system for trees)
Rajda, V., Dimitri, L. (1995). Die Elektrodiagnostik bei Bäumen als ein neues Verfahren zur Ermittlung ihrer Vitalität. Forstwissenschaftliches Centralblatt 114: 348-361.
Rhodes, J. D., Thain, J. F. & Wildon, C. D. (1996). The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200, 50-57.
Rhodes, J. “Evidence for Physically Distinct Systemic Signalling Pathways in the Wounded Tomato Plant.” Annals of Botany 84, no. 1 (July 1, 1999): 109–16. https://doi.org/10.1006/anbo.1999.0900
Rio, Leo C. and Marites M. Rio (2013). “EFFECT OF ELECTRO-MAGNETIC FIELD ON THE GROWTH CHARACTERISTICSOF OKRA ( Abelmoschus Esculentus ) , TOMATO ( Solanum Lycopersicum ) and EGGPLANT ( Solanum Melongena ).” – Int J Sci Res Publ 3(10) (ISSN: 2250-3153). https://www.semanticscholar.org/paper/EFFECT-OF-ELECTRO-MAGNETIC-FIELD-ON-THE-GROWTH-OKRA-Rio-Rio/3621865ce5f9c2150fcb6a45ce06eeabd5865f50
Roblin G – Analysis of the variation potential induced by wounding in plants – Plant Cell Physiol 1985;26:455-61 – 1985 – https://doi.org/10.1093/oxfordjournals.pcp.a076929
Rochalska M. (2007). Wpływ pól elektromagnetycznych na organizmy zywe: rośliny, ptaki i zwierzeta [The effect of electromagnetic fields on living organisms: plants, birds and animals]. Med Pr. 2007;58(1):37-48. Polish. PMID: 17571627.
Rosales, S., Daniels, D., Tzib, L. (2018). The effects of Neodymium and Ceramic magnets on the germination and growth rate of Coriander (Coriandrum sativum) in ex-vitro conditions. International Journal of Advances in Scientific Research and Engineering, 4(9), 17–22. https://doi.org/10.31695/ijasre.2018.32865
Rycroft, M.J., Harrison, R.G., Nicoll, K.A. et al. (2008). An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity. Space Sci Rev 137, 83–105. https://doi.org/10.1007/s11214-008-9368-6
Sabu, A., Dave, P. B., Jain, N. (2018). STATIC ELECTROMAGNETIC FIELD (EMF) OF LOW FREQUENCY ENHANCES SEED GERMINATION AND PLANT GROWTH AT EARLY STAGES OF DEVELOPMENT. Journal of Experimental Biology and Agricultural Sciences, 6(6), 966–972. https://doi.org/10.18006/2018.6(6).966.972
Sanders R, 2011 – https://news.berkeley.edu/2011/04/07/if-plants-generate-magnetic-fields-they%E2%80%99re-not-sayin%E2%80%99/
Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., Ihtisham, M., Liu, S. (2020). Magnetic Field (MF) applications in Plants: An Overview. Plants, 9(9), 1139. https://doi.org/10.3390/plants9091139
Schorpp, V. (18 February 2011). Tree Damage from Chronic High Frequency Exposure – Powerpoint: symposium on the effect of electromagnetic radiation on trees – The Groene Paviljoen, Baarn. http://www.puls-schlag.org/download/Schorpp-2011-02-18.pdf
Scott, D.E. (2006). Book, “The Electric Sky, a challenge to the myths of modern Astronomy” – Mikamar Publishing Portland Oregon US
Sheldrake, M. (2020). Book, “Entangled life, how fungi make our world, change our mind and shape the future”
Shepherd, V.A. (1999). “Bioelectricity and the Rhythms of Sensitive Plants – The Biophysical Research of Jagadis Chandra Bose.” Current Science 77, no. 1 (1999): 189–95. http://www.jstor.org/stable/24102933.
Simard, S. – Wood Wide Web – VPRO Tegenlicht documentaire over bossen – Suzanne Simard, hoogleraar bosecologie – 8 september 2019
Simard, S. (2021) Finding the Mother Tree: Discovering the Wisdom of the Forest. https://www.youtube.com/watch?v=3PvbU6fV8pg
Siņicina, N., Skromulis, A., Martinovs, A. (2015). Amount of air ions depending on indoor plant activity. Vide. TehnoloģIja. Resursi/Environment. Technology. Resources, 2, 267. https://doi.org/10.17770/etr2015vol2.247
Spencer, S., Mielczarek, M., Olszewski, J., Sereda, M., Joossen, I., Vermeersch, H., Gilles, A., Michiels, S. (2022). Effectiveness of bimodal auditory and electrical stimulation in patients with tinnitus: A feasibility study. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.971633
Squier, G.O. (June 1919) “Trees as Antennas” – Scientific American, British Patent Specification # 149,917 – https://worldradiohistory.com/Archive-Electrical-Experimenter/EE-1919-07.pdf
Stahlberg, R., Cleland, R.E., Van Volkenburgh, E. (2006). Slow Wave Potentials — a Propagating Electrical Signal Unique to Higher Plants. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_20
Stanković, B., Zawadzki, T., Davies, E. (1997). Characterization of the variation potential in sunflower. Plant Physiology, 115(3), 1083–1088. https://doi.org/10.1104/pp.115.3.1083
Sternheimer J – www.rexresearch.com/sternheimer/sternheimer.htm
Sternheimer, J. (2008). Method for the epigenetic regulation of protein biosynthesis by scale resonance DE69334164T. 2008-05-21. US2002177186. 2002-11-28. https://patents.google.com/patent/EP0648275B1/en
Szechyńska‐Hebda, M., Lewandowska, M., Karpiński, S. (2017). Electrical signaling, photosynthesis and systemic acquired acclimation. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00684
Takahashi, T., Isono, K. (1967). Electric charge on raindrops grown in warm clouds over the island of Hawaii. Tellus. Series a, Dynamic Meteorology and Oceanography, 19(3), 420. https://doi.org/10.3402/tellusa.v19i3.9811
Tattar, T.A., Blanchard, R.O. (1976). Electrophysiological research in plant pathology. Annual Review of Phytopathology, 14(1), 309–325. https://doi.org/10.1146/annurev.py.14.090176.001521
TH, 2021 – https://www.thehindu.com/sci-tech/science/question-corner-can-plants-produce-magnetic-fields/article33769551.ece#:~:text=A%20recent%20study%20(Scientific%20Reports,a%20biomagnetism%20phenomenon%20was%20observed
Thepnurat, M., Butsamran, P., Duangsanit, P., Kaewphila, P., Saphet, P., Tong-On, A., Supawan, K., & Ruanto, P. (2019). Influences of magnetic flux on growth and direction of Chiang Rai Phulae Pineapple roots. Journal of Physics. Conference Series, 1380(1), 012030. https://doi.org/10.1088/1742-6596/1380/1/012030
Thoby, J. (2019). Book, “Le Chant Secret des Plantes – Se ressourcer grace a la musique botanique” – Rustica editions
The Better India – https://www.thebetterindia.com/76587/jagdish-chandra-bose-indian-biophysicist-radio-plant-physiology/
Torgovnikov, G. I. (1993). Dielectric properties of wood and Wood-Based materials. In Springer series in wood science. https://doi.org/10.1007/978-3-642-77453-9
Toyota, M., Spencer, D., Sawai-Toyota, S., Wang, J., Zhang, T., Koo, A. J., Howe, G. A., Gilroy, S. (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 361(6407), 1112–1115. https://doi.org/10.1126/science.aat7744
Trebacz, K., Simonis, W., Schonknecht, G. (1997). “Effects of Anion Channel Inhibitors on Light-Induced Potential Changes in the Liverwort Conocephalum Conicum.” Plant & Cell Physiology/Plant and Cell Physiology 38, no. 5 (January 1, 1997): 550–57. https://doi.org/10.1093/oxfordjournals.pcp.a029204
Trebacz, Kazimierz, Halina Dziubinska, and Elzbieta Krol. “Electrical Signals in Long-Distance Communication in Plants.” In Springer eBooks, 277–90, 2006. https://doi.org/10.1007/3-540-28516-4_19
University of California, snails – Copper reacts with the slime that snails and slugs secrete, causing a disruption in their nervous system similar to an electric shock https://ucanr.edu/sites/CalSnailsandSlugs/Management/Barriers/#:~:text=It%20is%20believed%20that%20copper,similar%20to%20an%20electric%20shock
Ursum, B. (2008). Dierckx lecture about the about the link between electricity and trees, Nederlandse Dendrologische Vereniging – Boom rijmt op stroom – www.boomzorg.nl – TUDelft, Netherlands
Ursum, B. (2011). Plants are technologically challenging 1 & 2 – Dendrovaria – Technical university Delft, Netherlands in Arbor Vitae
Van Doorne, Y. https://www.electrocultureandmagnetoculture.com/contact.html
Vanella, D., Cassiani, G., Busato, L., Boaga, J., Barbagallo, S., Binley, A., & Consoli, S. (2018). Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation. Journal of Hydrology, 556, 310–324. https://doi.org/10.1016/j.jhydrol.2017.11.025
Volkov, A.G. (2000). Green plants: electrochemical interfaces. Journal of Electroanalytical Chemistry, 483(1–2), 150–156. https://doi.org/10.1016/s0022-0728(99)00497-0
Volkov, A.G., Mwesigwa, J. (2001). Electrochemistry of soybean: effects of uncouplers, pollutants, and pesticides. Journal of Electroanalytical Chemistry, 496(1–2), 153–157. https://doi.org/10.1016/s0022-0728(00)00242-4
Volkov, A.G., Dunkley, T.C., Morgan, S.A., Ruff, D., Boyce, Y.L., & Labady, A. (2004). Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochemistry, 63(1–2), 91–94. https://doi.org/10.1016/j.bioelechem.2003.09.025
Volkov, A.G., Shtessel, Y.B. (2018). Electrical signal propagation within and between tomato plants. Bioelectrochemistry, 124, 195–205. https://doi.org/10.1016/j.bioelechem.2018.08.001
Waldmann-Selsam, C., La Puente, A. B., Breunig, H., & Balmorí, A. (2016). Radiofrequency radiation injures trees around mobile phone base stations. Science of the Total Environment, 572, 554–569. https://doi.org/10.1016/j.scitotenv.2016.08.045
Wechsler, D. (17 December 2020). Book: Electro-Horticulture: The Secret to Faster Growth, Larger Yields & More… Using Electricity! – ISBN 1720083339
Weigand, M., Kemna, A. (2017). Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems. Biogeosciences, 14(4), 921–939. https://doi.org/10.5194/bg-14-921-2017
Wheaton, F.W. (2018). Effects of various electrical fields on seed germination – Iowa State University, Engineering, agricultural. https://doi.org/10.31274/rtd-180813-928
Wheaton, F.W. (1970). Influence of electrical energy on plants: A review, Maryland Agricultural experiment Station, Report No. 4262. University of Maryland, College Park, Maryland, U.S.A, pp.1-38.
Wikipedia – https://en.wikipedia.org/wiki/Jagadish_Chandra_Bose
Wohlleben, P. (2015) Book: Das geheime Leben der Bäume, was sie fühlen, wie sie kommunizieren, die Entdeckung einer verborgenen Welt (The hidden life of trees) – Ludwig Verlag, Verslagsgruppe Random House GmbH, München, Germany – ISBN: 978-3-453-28067-0 – 2015
Wohlleben, P. (13 September 2016). Book: The hidden life of trees: what they feel, how they communicate – Publisher; Greystone Books; First English Language Edition, 8th Printing – ISBN: 978-0-00-821843-0 –
Yang, W., Nagasawa, K., Münch, C., Xu, Y., Satterstrom, F. K., Jeong, S., Hayes, S., Jedrychowski, M. P., Vyas, F., Zaganjor, E., Guarani, V., Ringel, A. E., Gygi, S. P., Harper, J. W., & Haigis, M. C. (2016). Mitochondrial sirtuin network reveals dynamic SIRT3-Dependent deacetylation in response to membrane depolarization. Cell, 167(4), 985-1000.e21. https://doi.org/10.1016/j.cell.2016.10.016
Yano, A., Ohashi, Y., Hirasaki, T., & Fujiwara, K. (2004). Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics, 25(8), 572–581. https://doi.org/10.1002/bem.20036
Zapata, R., Oliver-Villanueva, J., Lemus, L., Luzuriaga, J.E., Mateo, M.Á., Urchueguı́a, J.F. (2020). Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem. Plant Signaling & Behavior/Plant Signalling & Behavior, 15(10), 1795580. https://doi.org/10.1080/15592324.2020.1795580
Zawadzki, T., Davies, E., Dziubinska, H., Trebacz, K. (1991). Characteristics of action potentials in Helianthus annuus L. Physiol Plant 83:601–604
Zawadzki, T., Dziubinska, H., Davies, E. (1995). Characteristics of action potentials generated spontaneously in Helianthus annuus. Physiol Plant 93:291–297
Zimmermann, M.R., Maischak, H., Mithöfer, A., Boland, W., Felle, H. (2009). System Potentials, a novel electrical Long-Distance apoplastic signal in plants, induced by wounding. Plant Physiology, 149(3), 1593–1600. https://doi.org/10.1104/pp.108.133884