Electric life
Chapter 6 – Ecosystem

BIBLIOGRAPHY – CHAPTER 6 – ECOSYSTEM
Chicken
Cuppen, J. J. M., Wiegertjes, G. F., Lobee, H. W. J., Savelkoul, H. F. J., Elmusharaf, M. A., Beynen, A. C., Grooten, H. N. A., & Smink, W. (2007). Immune stimulation in fish and chicken through weak low frequency electromagnetic fields. Environmentalist, 27(4), 577–583. https://doi.org/10.1007/s10669-007-9055-2
Wiltschko, W., Freire, R., Munro, U., Ritz, T., Rogers, L., Thalau, P., & Wiltschko, R. (2007). The magnetic compass of domestic chickens,Gallus gallus. Journal of Experimental Biology, 210(13), 2300–2310. https://doi.org/10.1242/jeb.004853
Denzau, S., Nießner, C., Rogers, L. J., & Wiltschko, W. (2013). The magnetic compass of domestic chickens. Communicative & Integrative Biology, 6(6), e27096. https://doi.org/10.4161/cib.27096
Chetverikova, R., Dautaj, G., Schwigon, L., Dedek, K., & Mouritsen, H. (2022). Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. Journal of the Royal Society Interface, 19(189). https://doi.org/10.1098/rsif.2021.0877
Coral reef
Goreau, T. J. F. (2022). Coral Reef Electrotherapy: field observations. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.805113
Samidon, M., Razi, N. M., Agustiar, M., Harahap, P. B., Najmi, N., Bahri, S., & Liu, S. Y. V. (2022). In-situ electro-stimulation enhanced branching but not massive scleractinian coral growth. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.917360
Hilberts, U. (23 August 2015) A New Future for Electric Coral Reefs – New Haven Diving School. World Coral Reef Alliance biorock net Supplier of CCell equipment. https://newheavenreefconservation.org/marine-blog/123-a-new-future-in-electric-coral-reefs
Cows and Dogs
Burda, H., Begall, S., Červený, J., Neef, J., Vojtěch, O. (2008). Magnetic alignment in grazing and resting cattle and deer. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13451–13455. https://doi.org/10.1073/pnas.0803650105
Gartland, P., Schiavo, J., Hall, C., Foote, R., & Scott, N. (1976). Detection of estrus in dairy cows by electrical measurements of vaginal mucus and by milk progesterone. Journal of Dairy Science, 59(5), 982–985. https://doi.org/10.3168/jds.s0022-0302(76)84307-x
Hart, V., Nováková, P., Malkemper, E. P., Begall, S., Hanzal, V., Ježek, M., Kušta, T., Němcová, V., Adámková, J., Benediktová, K., Červený, J., & Burda, H. (2013). Dogs are sensitive to small variations of the Earth’s magnetic field. Frontiers in Zoology, 10(1). https://doi.org/10.1186/1742-9994-10-80
Martini, S., Begall, S., Findeklee, T., Schmitt, M., Malkemper, E. P., & Burda, H. (2018). Dogs can be trained to find a bar magnet. PeerJ, 6, e6117. https://doi.org/10.7717/peerj.6117
Michaelson, S.M. (July 1958). Dogs turned toward the beam at 2800 MHz – Communication at the 2nd Tri-service Conference on Biological Effects of Microwave Energy, University of Virginia, reported by Baldwin and Bach. https://apps.dtic.mil/sti/tr/pdf/AD0824242.pdf
Podaný, J., Muzikant, J. (1972). Elektrický odpor mĕrený na vaginálí sliznici v prúbĕhu pohlavního cyklu u koz a ovcí [Electric resistance measured in the vaginal mucous membrane during the course of the sexual cycle in goats and sheep]. Vet Med (Praha). 1972 Aug;17(8):483-6. Czech. PMID: 4629224. https://pubmed.ncbi.nlm.nih.gov/4629224/
Podaný, J., Muzikant, J. (1970). Cyclic changes in the electric resistance measured on the vaginal mucous membrane of cows and heifers during the sexual cycle. ([n Czech.). VeterilUim{ medicina, Praha 15, 671-680.
Tasal, I., Ataman, M.B., Aksoy, M., Kaya, A., Karaca, F., Tekeli, T. (February 2005). Estimation of early pregnancy by electrical resistance values of vaginal mucosa in cows and heifers – Revue Méd. Vét., 2005, 156, 2, 91-94. https://www.researchgate.net/publication/279595527_Estimation_of_early_pregnancy_by_electrical_resistance_values_of_vaginal_mucosa_in_cows_and_heifers
Eels, catfish and rays
Catania, K. C. (2017). Power Transfer to a Human during an Electric Eel’s Shocking Leap. CB/Current Biology, 27(18), 2887-2891.e2. https://doi.org/10.1016/j.cub.2017.08.034
De Santana, C. D., Crampton, W. G. R., Dillman, C. B., Frederico, R. G., Sabaj, M. H., Covain, R., Ready, J., Zuanon, J., De Oliveira, R. R., Mendes-Júnior, R. N., Bastos, D. A., Teixeira, T. F., Mol, J., Ohara, W., Castro, N. C. E., Peixoto, L. A., Nagamachi, C., Sousa, L., Montag, L. F. A., . . . Wosiacki, W. B. (2019). Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11690-z
Nelson, M. E. (2011). Electric fish. CB/Current Biology, 21(14), R528–R529. https://doi.org/10.1016/j.cub.2011.03.045
Tomo News US – Most powerful electric eel identified in the Amazon basin – https://www.youtube.com/watch?v=6k8fCed885w&t=1s
University of Western Australia (February 2015). Fact sheet electrica eels. University of Western Australia 2010, version 2.0 revised. https://www.uwa.edu.au/study/-/media/faculties/science/docs/electric-eels.pdf
Elephants
Anthony, L., Spence, G. (2009). Book, ‘The Elephant Whisperer, Learning About Life, Loyalty and Freedom From a Remarkable Herd of Elephants’. ISBN 0330506684
Arnason, B. T., Hart, L. A., & O’Connell-Rodwell, C. E. (2002). The properties of geophysical fields and their effects on elephants and other animals. Deleted Journal, 116(2), 123–132. https://doi.org/10.1037/0735-7036.116.2.123
Beeck, V. C., Heilmann, G., Kerscher, M., & Stoeger, A. S. (2022). Sound visualization demonstrates velopharyngeal coupling and complex spectral variability in Asian elephants. Animals, 12(16), 2119. https://doi.org/10.3390/ani12162119
Elephant Voices, 1 – https://elephantvoices.org/elephant-communication/acoustic-communication.html
Elephant Voices, 2 – https://www.royaljozini.com/trumpets-rumbles-and-fatty-foot-pads/
Langbauer, W. R., Payne, K. B., Charif, R. A., Rapaport, L., & Osborn, F. (1991). African elephants respond to distant playbacks of Low-Frequency conspecific calls. Journal of Experimental Biology, 157(1), 35–46. https://doi.org/10.1242/jeb.157.1.35
McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003). Long-distance communication of acoustic cues to social identity in African elephants. Animal Behaviour, 65(2), 317–329. https://doi.org/10.1006/anbe.2003.2047
Mortimer, B., Rees, W. L., Koelemeijer, P., & Nissen-Meyer, T. (2018). Classifying elephant behaviour through seismic vibrations. CB/Current Biology, 28(9), R547–R548. https://doi.org/10.1016/j.cub.2018.03.062
O’Connell-Rodwell, C. E., Wood, J. D., Kinzley, C., Rodwell, T. C., Poole, J. H., & Puria, S. (2007). Wild African elephants (Loxodonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. the Journal of the Acoustical Society of America/the Journal of the Acoustical Society of America, 122(2), 823–830. https://doi.org/10.1121/1.2747161
Oxford, (2018). – https://www.ox.ac.uk/news/2018-05-07-feeling-beat-through-elephants-feet
Payne, K.B., Langbauer, W.R. & Thomas, E.M. Infrasonic calls of the Asian elephant (Elephas maximus). Behav Ecol Sociobiol 18, 297–301 (1986). https://doi.org/10.1007/BF00300007
Postma, A. (2020). Book ‘Hoe een gekke mier de wereld kan veranderen’. Meulenhoff Boekerij bv – ISBN 978-90-225-9773-6.
The Cornell Lab – https://elephantlisteningproject.org/all-about-infrasound/
Elephant nose fish
Bullock, T. H., Hamstra, R. H., & Scheich, H. (1972). The jamming avoidance response of high frequency electric fish. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology/Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 77(1), 1–22. https://doi.org/10.1007/bf00696517
Carlson, B. A., Hasan, S. M., Hollmann, M., Miller, D. B., Harmon, L. J., & Arnegard, M. E. (2013). Brain evolution triggers increased diversification of electric fishes. Science, 332(6029), 583–586. https://doi.org/10.1126/science.1201524
Cell Press (11 July 2018). A fish that subtracts its own electric signals to better ‘see’ through its murky habitat – ScienceDaily. ScienceDaily. www.sciencedaily.com/releases/2018/07/180711122405.htm –
EHRA PEACE Project, (2019) – https://m.facebook.com/EHRANamibia/photos/how-do-elephants-communicate-like-all-highly-social-mammals-elephants-have-a-wel/10157671799018804/
Feng, A. S. (1991). Electric organs and electroreceptors. In Comparative Animal Physiology, 4th ed., ed. C.L. Prosser, 217-34 (New York: John Wiley and Sons). https://www.wiley.com/en-nl/Comparative+Animal+Physiology%2C+Part+B%2C+Neural+and+Integrative+Animal+Physiology%2C+4th+Edition-p-9780471560715
Hopkins, C. D. (1972). Sex differences in electric signaling in an electric fish. Science, 176(4038), 1035–1037. https://doi.org/10.1126/science.176.4038.1035
Hopkins CD – Lightning as a background noise for communication among electric fish. Nature 242:268-70 – 1973
Hopkins, C.D. (1974a). Electric communication in fish. Am. Sci. 62:426-37. https://zoryglaser.com/wp-content/uploads/2020/05/ELECTRIC-COMMUNICATION-IN-FISH.pdf
Hopkins, C.D. (1974b). Electric communication in the reproductive behavior of Sternopygus marcus (Gymnotoidei). TierpsychoL 35:518-35.
Hopkins, C. D. (1988). Neuroethology of Electric Communication. Annual Review of Neuroscience, 11(1), 497–535. https://doi.org/10.1146/annurev.ne.11.030188.002433
Hagedorn, M., & Heiligenberg, W. (1985). Court and spark: electric signals in the courtship and mating of gymnotoid fish. Animal Behaviour, 33(1), 254–265. https://doi.org/10.1016/s0003-3472(85)80139-1
Hagedorn, M.M. (1986). The ecology, courtship, and mating of gymnotiform electric fish. See Bullock & Heiligenberg 1986, 1: 497- 525 – 1986
Hagedorn, M.M., Carr, C. (1985). “Single electrocytes produce a sexually dimorphic signal in South American electric fish, Hypopomus occidentalis (Gymnotiformes, Hypopomidae).” Journal of Comparative Physiology A, 156 511–523.
Kawasaki, M. (2005). Physiology of Tuberous Electrosensory Systems. Physiology of tuberous electrosensory Systems. In Springer eBooks (pp. 154–194). https://doi.org/10.1007/0-387-28275-0_7
Sebeok, T.A. (1977). Book, How animals communicate, Chapter 13: Electric communication, Carl D. Hopkins. ISBN 0-253-32855-1. https://publish.iupress.indiana.edu/projects/how-animals-communicate
Wikipedia Fish – https://en.wikipedia.org/wiki/Electrocommunication
Fire
Shrivastava P, Kumar, V., Tiwari, P., Malhotra, V. (2016). Magnetic Flame Spread – International Journal of Application or Innovation in Engineering & Management (IJAIEM), Volume 5, Issue 9. ISSN 2319 – 4847
Revanth, A. V., Malaikannan, G., & Malhotra, V. (2020). On the effect of repulsive magnetic field on partially premixed flames. IOP Conference Series. Materials Science and Engineering, 912(4), 042020. https://doi.org/10.1088/1757-899x/912/4/042020
Fish
Alshami, I. J., Ono, Y., Correia, A., Hacker, C., Lange, A., Scholpp, S., Kawasaki, M., Ingham, P. W., & Kudoh, T. (2020). Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio. Developmental Biology, 466(1–2), 99–108. https://doi.org/10.1016/j.ydbio.2020.06.010
Moller, P., & Bauer, R. (1973). “Communication” in weakly electric fish, Gnathonemus petersii (Mormyridae): II. Interaction of electric organ discharge activities of two fish. Animal Behaviour, 21(3), 501–512. https://doi.org/10.1016/S0003-3472(73)80010-7
Moller, P., Serrier, J., & Bowling, D. (1989). Electric Organ Discharge Displays during Social Encounter in the Weakly Electric Fish Brienomyrus niger L. (Mormyridae). Ethology, 82(3), 177–191. https://doi.org/10.1111/j.1439-0310.1989.tb00498.x
Schwassmann, H.O., Assuncao, M.I., Kirschbaum, F. (2014). Ontogeny of the electric organs in the electric eel, Electrophorus electricus: physiological, histological, and fine structural investigations. Brain Behav. Evol. 84, 288–302 – 2014 – DOI: 10.1159/000367884
Stoddard, P. K., & Salazar, V. L. (2011). Energetic cost of communication. Journal of Experimental Biology, 214(2), 200–205. https://doi.org/10.1242/jeb.047910
Zakon, H. H., Zwickl, D. J., Lu, Y., & Hillis, D. M. (2008). Molecular evolution of communication signals in electric fish. Journal of Experimental Biology, 211(11), 1814–1818. https://doi.org/10.1242/jeb.015982
Foxes
Nießner, C., Denzau, S., Malkemper, E. P., Gross, J. C., Burda, H., Winklhofer, M., & Peichl, L. (2016). Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals. Scientific Reports, 6(1). https://doi.org/10.1038/srep21848
Červený, J., Begall, S., Koubek, P., Nováková, P., & Burda, H. (2010). Directional preference may enhance hunting accuracy in foraging foxes. Biology Letters, 7(3), 355–357. https://doi.org/10.1098/rsbl.2010.1145
BBC (2014). How foxes use magnetic fields to catch prey – The Wonder of Animals: Episode 5 Preview – BBC Four https://www.youtube.com/watch?v=1MWoPKlAXx4
Sci-Show – https://www.youtube.com/watch?v=ia5vxCSiwm4&t=10s
Wildlife online – https://www.wildlifeonline.me.uk/animals/article/red-fox-senses
Frogs
Adams, D.A. (2011). https://now.tufts.edu/2011/07/18/face-frog-time-lapse-video-reveals-never-seen-bioelectric-pattern
AP Archive – Netherlands: British & Dutch scientists make frog float in mid-air – https://www.youtube.com/watch?v=KlJsVqc0ywM&t=30s
Berry, M. V., & Geim, A. K. (1997). Of flying frogs and levitrons. European Journal of Physics, 18(4), 307–313. https://doi.org/10.1088/0143-0807/18/4/012
James Lincoln Demonstrations – Paramagnetism and Diamagnetism – uclaphysicsvideo – https://www.youtube.com/watch?v=u36QpPvEh2c
Ludic Science – Diamagnetism of Water. https://www.youtube.com/watch?v=lTmFjQCPfCg
Simon, M. D., & Geim, A. K. (2000). Diamagnetic levitation: Flying frogs and floating magnets (invited). Journal of Applied Physics, 87(9), 6200–6204. https://doi.org/10.1063/1.372654
Lizards and Geckos
Izadi, H., Stewart, K. M. E., & Penlidis, A. (2014). Role of contact electrification and electrostatic interactions in gecko adhesion. Journal of the Royal Society Interface, 11(98). https://doi.org/10.1098/rsif.2014.0371
Xi, P., Ye, S., & Cong, Q. (2023). Abalone adhesion: The role of various adhesion forces and their proportion to total adhesion force. PloS One, 18(6), e0286567. https://doi.org/10.1371/journal.pone.0286567
Peterman, T., Podgornik, R. (15 February 2006). Gecko climbs a wall using van der Waals force – University of Ljubljana Faculty of Mathematics and Physics. https://www.researchgate.net/publication/239543215_Gecko_climbs_a_wall_using_van_der_Waals_force
Nirody, J. A., Jinn, J., Libby, T., Lee, T. J., Jusufi, A., Hu, D. L., & Full, R. J. (2018). Geckos race across the water’s surface using multiple mechanisms. CB/Current Biology, 28(24), 4046-4051.e2. https://doi.org/10.1016/j.cub.2018.10.064
Grismer, Larry & Wood Jr, Perry & Quah, Evan & Anuar, Shahrul & Muin, Mohd & Sumontha, Montri & Ahmad, Norhayati & Bauer, A. & Wangkulangkul, Sansareeya & Grismer, Jesse & Pauwels, Olivier. (2012). A phylogeny and taxonomy of the Thai-Malay Peninsula Bent-toed Geckos of the Cyrtodactylus pulchellus complex (Squamata: Gekkonidae): Combined morphological and molecular analyses with descriptions of seven new species. Zootaxa. 3520. 1-55. Doi:10.11646/zootaxa.3520.1.1. – https://mapress.com/zt/article/view/zootaxa.3520.1.1
Migratory Birds
Warnke, U. (1989). Information Transmission by Means of Electrical Biofields, Electromagnetic Bio-Information, F.A. Popp, U. Warnke, H. König, W. Peschka (eds.), 2nd edition. Urban 8t Schwarzenberg, München, Wien Baltimore, 74-101
Warnke, U. January 2008). Bees, Birds and Mankind – Kempten, 1st edition November 2007, ISBN: 978-3-00-023124-7 – English Edition – University of Saarland https://www.researchgate.net/profile/Ulrich-Dr-Warnke-2/publication/241538484_BEES_BIRDS_AND_MANKIND/links/54eaeb240cf2f7aa4d5845c7/BEES-BIRDS-AND-MANKIND.pdf
Kirschvink, J.L. (1996). Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics. 1996;17(3):187-94. doi: 10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-#. PMID: 8809358. https://pubmed.ncbi.nlm.nih.gov/8809358/
Van Dam, W., Tanner, J. A., & Romero-Sierra, C. (1970). A preliminary investigation of piezoelectric effects in chicken feathers. IEEE Transactions on Bio-medical Engineering/IEEE Transactions on Biomedical Engineering, BME-17(1), 71. https://doi.org/10.1109/tbme.1970.4502689
Bigu-del-Blanco, J., Romero-Sierra C. (1975a). The properties of bird feathers as converse piezoelectric transducers and as receptors of microwave radiation. I. Bird feathers as converse piezoelectric transducers. Biotelemetry. 1975a;2(6):341-53. PMID: 1235241.
Bigu-del-Blanco, J., Romero-Sierra C. (1975b). The properties of bird feathers as converse piezoelectric transducers and as receptors of microwave radiation. II. Bird feathers as dielectric receptors of microwave radiation. Biotelemetry. 1975b; 2(6): 354-364 – 1975b
Mole Rat
Kimchi, T., Etienne, A. S., & Terkel, J. (2004). A subterranean mammal uses the magnetic compass for path integration. Proceedings of the National Academy of Sciences of the United States of America, 101(4), 1105–1109. https://doi.org/10.1073/pnas.0307560100
Monkeys
D’andrea, J. A., Thomas, A., & Hatcher, D. J. (1994). Rhesus monkey behavior during exposure to high‐peak‐power 5.62‐GHz microwave pulses. Bioelectromagnetics, 15(2), 163–176. https://doi.org/10.1002/bem.2250150207
Fischer, L., Germain, G., Florence, G., Milhaud, C. (1990). Changes in electrical impedance of the vaginal medium during the menstrual cycle of female rhesus monkeys (Macaca mulatta). J Med Primatol. 1990;19(6):573-82. PMID: 2246777. https://pubmed.ncbi.nlm.nih.gov/2246777/
Glander, K.E. (22 February 1992). What (howler) monkeys chew to choose their children’s sex – Duke University, Durham, Magazine; New Scientist, issue 1809. https://www.newscientist.com/article/mg13318092-300/
Honjo, S., Cho, F., & Terao, K. (1984). Establishing the Cynomolgus monkey as a laboratory animal. In Advances in veterinary science and comparative medicine (pp. 51–80). https://doi.org/10.1016/b978-0-12-039228-5.50008-5
Tsuchiya, H., Ogonuki, N., Yoshida, T., Cho, F., Yoshikawa, Y., Ito., M, Sankai, T. (October 1998). Changes in electrical impedance of vaginal mucus during the menstrual cycle in cynomolgus monkeys (Macaca fascicularis). Lab Anim Sci. 1998 Oct;48(5):535-7. PMID: 10090072. https://pubmed.ncbi.nlm.nih.gov/10090072/
Oceans
ESA (2 October 2016). https://www.esa.int/Applications/Observing_the_Earth/Swarm/Magnetic_oceans_and_electric_Earth
Petereit, J., Saynisch‐Wagner, J., Irrgang, C., & Thomas, M. (2019). Analysis of Ocean Tide‐Induced magnetic fields derived from oceanic in situ observations: climate trends and the remarkable sensitivity of shelf regions. Journal of Geophysical Research. Oceans, 124(11), 8257–8270. https://doi.org/10.1029/2018jc014768
Oxygen
Tretyakov, M., Koshelev, M., Dorovskikh, V., Makarov, D., & Rosenkranz, P. (2005). 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients. Journal of Molecular Spectroscopy, 231(1), 1–14. https://doi.org/10.1016/j.jms.2004.11.011
Platypus
Andres, K.H., von Düring, M., Iggo, A. et al. (1991). The anatomy and fine structure of the echidnaTachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol 184, 371–393. https://doi.org/10.1007/BF00957899
Andres, K. H., von Düring, M. (1984). “The platypus bill. A structural and functional model of a pattern-like arrangement of different cutaneous sensory receptors.” Sensory receptor mechanisms (eds W. Hamann & A. Iggo): 81-89.
Gregory, J. E., Iggo, A., McIntyre, A. K., & Proske, U. (1988). Receptors in the bill of the platypus. Journal of Physiology, 400(1), 349–366. https://doi.org/10.1113/jphysiol.1988.sp017124
Johnsen, S., & Lohmann, K. J. (2008). Magnetoreception in animals. Physics Today, 61(3), 29–35. https://doi.org/10.1063/1.2897947
Pettigrew, J. D. (1999). Electroreception in monotremes. Journal of Experimental Biology, 202(10), 1447–1454. https://doi.org/10.1242/jeb.202.10.1447
Proske, U., & Gregory, J. E. (2003). Electrolocation in the platypussome speculations. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 136(4), 821 – 825. https://doi.org/10.1016/S1095-6433(03)00160-0
Proske, U., Gregory, J. E., & Iggo, A. (1998). Sensory receptors in monotremes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1187 – 1198.
Scheich, H., Langner, G., Tidemann, C., Coles, R. B., & Guppy, A. (1986). Electroreception and electrolocation in platypus. Nature, 319(6052), 401–402. https://doi.org/10.1038/319401a0
Wilkens, L.A., Hofmann, M.H. (2005). Behavior of Animals with Passive, Low-Frequency Electrosensory Systems. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_9
Rabbits
Durgun, M., Dasdag, S., Erbatur, S., Yegin, K., Durgun, S. O., Uzun, C., Ogucu, G., Alabalik, U., & Akdag, M. Z. (2015). Effect of 2100 MHz mobile phone radiation on healing of mandibular fractures: an experimental study in rabbits. Biotechnology & Biotechnological Equipment, 30(1), 112–120. https://doi.org/10.1080/13102818.2015.1102612
Grigor’ev, Iu.G., Luk’ianova, S.N., Makarov, V.P., Rynskov, V.V., Moiseeva, N.V. (1995). Motor activity of rabbits in conditions of chronic low-intensity pulse microwave irradiation. Radiats Biol Radioecol. 1995 Jan-Feb;35(1):29-35. PMID: 7719427. https://pubmed.ncbi.nlm.nih.gov/7719427/
Güler, G., Tomruk, A., Ozgur, E., Sahin, D., Sepici, A., Altan, N., & Seyhan, N. (2012). The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. International Journal of Radiation Biology, 88(4), 367–373. https://doi.org/10.3109/09553002.2012.646349
Kojima, M., Hata, I., Wake, K., Watanabe, S., Yamanaka, Y., Kamimura, Y., Taki, M., & Sasaki, K. (2004). Influence of anesthesia on ocular effects and temperature in rabbit eyes exposed to microwaves. Bioelectromagnetics, 25(3), 228–233. https://doi.org/10.1002/bem.10195
Marino, A., Nilsen, E., & Frilot, C. (2003). Localization of electroreceptive function in rabbits. Physiology & Behavior, 79(4–5), 803–810. https://doi.org/10.1016/s0031-9384(03)00206-3
Saili, L., Hanini, A., Smirani, C., Azzouz, I., Azzouz, A., Sakly, M., Abdelmelek, H., & Bouslama, Z. (2015). Effects of acute exposure to WIFI signals (2.45GHz) on heart variability and blood pressure in Albinos rabbit. Environmental Toxicology and Pharmacology, 40(2), 600–605. https://doi.org/10.1016/j.etap.2015.08.015
Salama, N., Kishimoto, T., Kanayama, H., & Kagawa, S. (2010). Effects of exposure to a mobile phone on sexual behavior in adult male rabbit: an observational study. International Journal of Impotence Research, 22(2), 127–133. https://doi.org/10.1038/ijir.2009.57
Shandala, M. G., Dumanskiĭ, U. D., Rudnev, M. I., Ershova, L. K., & Los, I. P. (1979). Study of nonionizing microwave radiation effects upon the central nervous system and behavior reactions. Environmental Health Perspectives, 30, 115–121. https://doi.org/10.1289/ehp.7930115
Zakharchenko, M. V., Kovzan, A. V., Khunderyakova, N. V., Yachkula, T. V., Krukova, O. V., Khlebopros, R. G., Shvartsburd, P. M., Fedotcheva, N. I., Litvinova, E. G., & Kondrashova, M. N. (2016). The effect of cell-phone radiation on rabbits: Lymphocyte enzyme-activity data. Biophysics, 61(1), 100–104. https://doi.org/10.1134/s0006350916010279
Rat
Akbarnejad, Z., Esmaeilpour, K., Shabani, M., Asadi-Shekaari, M., Goraghani, M. S., & Ahmadi-Zeidabadi, M. (2017). Spatial memory recovery in Alzheimer’s rat model by electromagnetic field exposure. International Journal of Neuroscience, 128(8), 691–696. https://doi.org/10.1080/00207454.2017.1411353
Bartos, L. (1975). Oestral cycle phase determination by means of electrical impedance measurements of vaginal mucous membrane in rat. Physiol. Bohemoslov. 24:427
Koto, M., Miwa, M., Tsuji, K., Okamoto, M., & Adachi, J. (1987). Change in the electrical impedance caused by cornification of the epithelial cell layer of the vaginal mucosa in the rat. Jikken Doubutsu Ihou/Jikken Doubutsu/Experimental Animals/Jikken Dobutsu, 36(2), 151–156. https://doi.org/10.1538/expanim1978.36.2_151
Koto, M., Miwa, M., Togashi, M., Tsuji, K., Okamoto, M., & Adachi, J. (1987). A Method for Detecting the Optimum Day for Mating during 4-day Estrous Cycle in the Rat; Measuring the Value of Electrical Impedance of Vagina. Jikken Doubutsu Ihou/Jikken Doubutsu/Experimental Animals/Jikken Dobutsu, 36(2), 195–198. https://doi.org/10.1538/expanim1978.36.2_195
Zhou, L., Filiberti, A., Humphrey, M. B., Fleming, C. D., Scherlag, B. J., Po, S. S., & Stavrakis, S. (2018). Low‐level transcutaneous vagus nerve stimulation attenuates cardiac remodelling in a rat model of heart failure with preserved ejection fraction. Experimental Physiology, 104(1), 28–38. https://doi.org/10.1113/ep087351
Raindrops
Chalmers, J. A., & Pasquill, F. (1938). The electric charges on single raindrops and snowflakes. Proceedings of the Physical Society, 50(1), 1–16. https://doi.org/10.1088/0959-5309/50/1/302
Selvam, M., Manohar, G.K., Khemani, L.T., Ramana Murty, Bh.V. (1977). Characteristics of Raindrop Charge and Associated Electric Field in Different Types of Rain. Journal of the Atmospheric Sciences 34(11):1791-1796. DOI:10.1175/1520-0469(1977)034<1791:CORCAA>2.0.CO;2 – https://www.researchgate.net/publication/234376370_Characteristics_of_Raindrop_Charge_and_Associated_Electric_Field_in_Different_Types_of_Rain
Takahashi, T., & Isono, K. (1967). Electric charge on raindrops grown in warm clouds over the island of Hawaii. Tellus, 19(3), 420–431. https://doi.org/10.1111/j.2153-3490.1967.tb01497.x
Seals
Hanke, W., Dehnhardt, G., Czech-Damal NU, Manger, P. (11 June 2010). Seal scan see with electroreceptive whiskers – University of Rostock Germany, Journal of experimental Biology, Online BBC Science & Environment; https://www.bbc.com/news/10287564
Sharks
Balcombe J – Book: What a fish knows: The inner lives of our underwater cousins – Scientific American / Farrar, Straus and Giroux, ISBN-13: 978-0374537098 – 2016
Fields, R.D. (August 2007). The shark’s electric sense. An astonishingly sensitive detector of electric fields helps sharks zero in on prey – Scientific American, p. 74-81. DOI:10.1038/scientificamerican0807-74. https://www.bennington.edu/sites/default/files/sources/docs/Sherman_shark%27s%20electric%20sense.pdf
Murray, R. W. (1965). Receptor mechanisms in the ampullae of lorenzini of Elasmobranch fishes. Cold Spring Harbor Symposia on Quantitative Biology/Cold Spring Harbor Symposia on Quantitative Biology, 30(0), 233–243. https://doi.org/10.1101/sqb.1965.030.01.026
Sheep
Edwards, D., & Levin, R. (1974). An electrical method of detecting the optimum time to inseminate cattle, sheep and pigs. Veterinary Record/the Veterinary Record, 95(18), 416–420. https://doi.org/10.1136/vr.95.18.416
Sperm whale
Ferrari, T. E. (2016). Cetacean beachings correlate with geomagnetic disturbances in Earth’s magnetosphere: an example of how astronomical changes impact the future of life. International Journal of Astrobiology, 16(2), 163–175. https://doi.org/10.1017/s1473550416000252
Vanselow, K. H., & Ricklefs, K. (2004). Are solar activity and sperm whale Physeter macrocephalus strandings around the North Sea related? Journal of Sea Research, 53(4), 319–327. https://doi.org/10.1016/j.seares.2004.07.006
Vanselow, K. H., Ricklefs, K., & Colijn, F. (2009). Solar Driven Geomagnetic Anomalies and Sperm Whale (Physeter macrocephalus) Strandings Around the North Sea: An Analysis of Long Term Datasets. the Open Marine Biology Journal, 3(1), 89–94. https://doi.org/10.2174/1874450800903010089
Vanselow, K. H. (2020). Where are Solar storm-induced whale strandings more likely to occur? International Journal of Astrobiology, 19(5), 413–417. https://doi.org/10.1017/s1473550420000051
Squids
Bedore, C. N., Kajiura, S. M., & Johnsen, S. (2015). Freezing behaviour facilitates bioelectric crypsis in cuttlefish faced with predation risk. Proceedings – Royal Society. Biological Sciences/Proceedings – Royal Society. Biological Sciences, 282(1820), 20151886. https://doi.org/10.1098/rspb.2015.1886
Godfrey-Smith, P. (1 January 2017). The mind of an octopus; eight smart limbs plus a big brain add up to a weird and wonderous kind of intelligence – Scientific American, Neuroscience, Published by arrangement with Farrar, Straus and Giroux, LLC (U.S.), HarperCollins (U.K.), Online: https://www.scientificamerican.com/article/the-mind-of-an-octopus/
Gonzalez-Bellido, P. T., Wardill, T. J., Crook, R. J., & Hanlon, R. T. (2012). Neural control of tuneable skin iridescence in squid. Proceedings – Royal Society. Biological Sciences/Proceedings – Royal Society. Biological Sciences, 279(1745), 4243–4252. https://doi.org/10.1098/rspb.2012.1374
Oellermann, M. (2015). Blue Blood on Ice : Cephalopod haemocyanin function and evolution in a latitudinal cline. https://doi.org/10.13140/rg.2.1.1283.3442
Sound
Boco, M.A. (2022). Sound Energy Harvesting and Converting Electricity (SEHCE). Annals of Mathematics and Physics, 5(2), 146–149. https://doi.org/10.17352/amp.000056
Salleh, H. M., & Yahya, M. N. (2022). Initial Study of Converting Sound Energy into Electrical Energy. Journal of Sustainable Manufacturing in Transportation, 2(1). https://doi.org/10.30880/jsmt.2022.02.01.001
Ahmed, H., Yousif, T., Abdulghany, E. (2021). Electric Energy from Sound Energy. doi:10.13140/RG.2.2.28012.39047 – https://www.researchgate.net/publication/348443552_Electric_Energy_from_Sound_Energy
Xu, M., Yamamoto, K., Puebla, J., Baumgaertl, K., Rana, B., Miura, K., Takahashi, H., Grundler, D., Maekawa, S., & Otani, Y. (2020). Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling. Science Advances, 6(32). https://doi.org/10.1126/sciadv.abb1724
Turtles
Lohmann, K. J., Avens, L. (2003). Use of multiple orientation cues by juvenile loggerhead sea turtlesCaretta caretta. Journal of Experimental Biology, 206(23), 4317–4325. https://doi.org/10.1242/jeb.00657
Volcanos
Aplin, K. L., Houghton, I. M. P., & Nicoll, K. A. (2014). Electrical charging of ash in Icelandic volcanic plumes. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1404.6905
Arason, T., Petersen, G.N., Bjornsson, H. (2013). Estimation of eruption site location using volcanic lightning. Icelandic Met Ofce Vedustofar Islands Report 2013–006. https://en.vedur.is/media/vedurstofan/utgafa/skyrslur/2013/VI_2013_006.pdf
Büttner, R., Röder, H., & Zimanowski, B. (1997). Electrical effects generated by experimental volcanic explosions. Applied Physics Letters, 70(14), 1903–1905. https://doi.org/10.1063/1.118726
Cimarelli, C., & Genareau, K. (2022). A review of volcanic electrification of the atmosphere and volcanic lightning. Journal of Volcanology and Geothermal Research, 422, 107449. https://doi.org/10.1016/j.jvolgeores.2021.107449
Cimarelli, C., Behnke, S., Genareau, K., Harper, J. M., & Van Eaton, A. R. (2022). Volcanic electrification: recent advances and future perspectives. Bulletin of Volcanology, 84(8). https://doi.org/10.1007/s00445-022-01591-3
Haney, M. M., Van Eaton, A. R., Lyons, J. J., Kramer, R. L., Fee, D., Iezzi, A. M., Dziak, R. P., Anderson, J., Johnson, J. B., Lapierre, J. L., & Stock, M. (2020). Characteristics of thunder and electromagnetic pulses from volcanic lightning at Bogoslof volcano, Alaska. Bulletin of Volcanology, 82(2). https://doi.org/10.1007/s00445-019-1349-y
James, M. R., Wilson, L., Lane, S. J., Gilbert, J. S., Mather, T. A., Harrison, R. G., & Martin, R. S. (2008). Electrical charging of volcanic plumes. Space Science Reviews, 137(1–4), 399–418. https://doi.org/10.1007/s11214-008-9362-z
Méndez Harper, J., Steffes, P., Dufek, J., & Akins, A. (2019). The effect of electrostatic charge on the propagation of GPS (L‐band) signals through volcanic plumes. Journal of Geophysical Research. Atmospheres, 124(4), 2260–2275. https://doi.org/10.1029/2018jd029076
Woodhouse, M. J., & Behnke, S. A. (2014). Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland. Bulletin of Volcanology, 76(8). https://doi.org/10.1007/s00445-014-0828-4
Water
Banejad, H., Abdosalehi, E, (2009). The effect of magnetic field on waterhardness reducing – Agriculture Faculty, Bu_Ali Sina University, Hamedan, Iran https://aquavital.hr/wp-content/uploads/2023/07/The_Effect_of_Magnetic_Field_on_Water_Ha.pdf
Chaplin, M. F. (2019). Structure and Properties of Water in its Various States. Encyclopedia of Water, 1–19. https://doi.org/10.1002/9781119300762.wsts0002
Chibowski, E., Szcześ, A., & Hołysz, L. (2018). Influence of magnetic field on evaporation rate and surface tension of water. Colloids and Interfaces, 2(4), 68. https://doi.org/10.3390/colloids2040068
Consigli, P. (April 2008). Book: Water, pure and simple, the infinite wisdom of an extraordinary molecule. ISBN 9781905857364
Del Giudice, E., Tedeschi, A., Vitiello, G., & Voeikov, V. (2013). Coherent structures in liquid water close to hydrophilic surfaces. Journal of Physics. Conference Series, 442, 012028. https://doi.org/10.1088/1742-6596/442/1/012028
Geesink, H.J.H., Jerman, I., Meijer, D.K.F. (26 February 2020). Water, The Cradle of Life via its Coherent Quantum Frequencies – Doi:10.14294/WATER.2020.1. https://www.researchgate.net/publication/340731765_Water_The_Cradle_of_Life_via_its_Coherent_Quantum_Frequencies
Ho, M. (2015). Illuminating water and life: Emilio Del Giudice. Electromagnetic Biology and Medicine, 34(2), 113–122. https://doi.org/10.3109/15368378.2015.1036079
Jacobs, N., NOAA, (17 May 2019). 5G Networks could throw weather forecasting into chaos – Wired, Online, https://www.wired.com/story/5g-networks-could-throw-weather-forecasting-into-chaos/
Keegan, L., Keegan, G.T. (1 December 1998). Book: Healing waters, the miraculous health benefits of earth’s most essential resource – ISBN 10 0425165264
Kieft. H, Funneman, S. (November 2020). Boek, Straling van alle kanten bekeken
Kozic, V., Krope, J., Lipus, L. C., & Ticar, I. (2006). Magnetic Field Analysis on Electromagnetic Water Treatment Device. Hungarian Journal of Industry and Chemistry, 34(1). https://doi.org/10.1515/111
Messori, C. (2019). The Super-Coherent state of biological water. OAlib, 06(02), 1–5. https://doi.org/10.4236/oalib.1105236
Montagnier, L., Aissa, J., Del Giudice, E., Lavallee, C., Tedeschi, A., & Vitiello, G. (2011). DNA waves and water. Journal of Physics. Conference Series, 306, 012007. https://doi.org/10.1088/1742-6596/306/1/012007
Montagnier, L., Del Giudice, E., Aïssa, J., Lavallee, C., Motschwiller, S., Capolupo, A., Polcari, A., Romano, P., Tedeschi, A., & Vitiello, G. (2015). Transduction of DNA information through water and electromagnetic waves. Electromagnetic Biology and Medicine, 34(2), 106–112. https://doi.org/10.3109/15368378.2015.1036072
Mosin, O., & Ignatov, I. (2014). Basic concepts of magnetic water treatment. European Journal of Molecular Biotechnology, 4(2), 72–85. https://doi.org/10.13187/ejmb.2014.4.72
Pollack, G.H. (2013). Book: The fourth phase of water. ISBN 978 0 9626895 43
Schenk, D., New Scientist, (2 oktober 2020). 5G kan leiden tot minder nauwkeurige weerberichten. https://www.newscientist.nl/nieuws/5g-kan-leiden-tot-minder-nauwkeurige-weerberichten/
Science sparks – https://www.science-sparks.com/how-to-bend-water-with-static-electricity/#:~:text=Why%20does%20the%20water%20bend,the%20stream%20of%20water%20bend.
Sun, Q., Wang, D., Li, Y., Zhang, J., Ye, S., Cui, J., Chen, L., Wang, Z., Butt, H., Vollmer, D., & Deng, X. (2019). Surface charge printing for programmed droplet transport. Nature Materials, 18(9), 936–941. https://doi.org/10.1038/s41563-019-0440-2
The Naked Scientist – https://www.thenakedscientists.com/get-naked/experiments/bending-water-static-attraction
Wang, Y., Wei, H., & Li, Z. (2017). Effect of magnetic field on the physical properties of water. Results in Physics, 8, 262–267. https://doi.org/10.1016/j.rinp.2017.12.022
Yousefvand M, Wu, C.T.M., Wang, R.Q., Brodie, J.F., Mandayam, N. (2020). Modeling the Impact of 5G Leakage on Weather Prediction. Rutgers University North Brunswick and Piscataway, NJ, USA. https://arxiv.org/pdf/2008.13498